
Chapter 1

Propositional logic

1.1 Prologue: A logic problem on labels and jars

Mathematics is all about solving problems involving objects like sets, functions, numbers,
derivatives, integrals, and so on. The goal of this chapter is to train and enhance your problem
solving skills in general, by explaining you some tools from mathematical logic. To identify
and motivate these tools, we consider as an example the following problem:

Example 1.1.1
Problem: Given are three jars. You cannot see what is inside the bottles, but they are labelled
with “Apples”, “Both” and “Pears”. The label “Both” simply means that the jar contains both
apples and pears. However, the problem is that someone switched the labels in such a way
that no label is on the right jar anymore. In other words: We know that for any jar, it holds
that its label is “Apples” or “Both” or “Pears”. Also we know that currently all labels are
wrong, which implies that the left jar has true label “Both” or “Pears”, the middle jar has true
label “Apples” or “Pears”, while the right jar has true label “Apples” or “Both”.

To figure out where the labels really should be placed, you can draw fruit from each jar.
How many times would you need to draw from the jars in order to figure out where the
labels were originally?

We will solve this puzzle later, but feel free to think about it already now!

1.2 Getting started with propositional logic

Now the point of the puzzle with the jars and labels is, that thinking about it identifies several
key ingredients that are useful in general, when thinking about a mathematical problem. One
uses words like “and”, “or”, “not”, “if ... then” when attacking problems of this sort. Let
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Apples Both Pears

Figure 1.1: A problem with labels and jars

us therefore introduce some notation from what is known as propositional logic. First of all,
it deals with combinations of short statements that can be either true or false. An example
of such a short statement is: the label of jar number one is “Apples”. We will call such a
statement a logical proposition. Here are three more examples of such propositions: x = 10,
1 < y, a ̸= p.

We will typically use variables like P, Q and so on, to denote such propositions. Saying that a
logical proposition P can be true of false, is more formally stated as: P can take the value T (T
for true), or the value F (F for false). It is also common to use the number 1 instead of T and 0
instead of F, but in this text we will stick to T and F.

Sometimes a proposition can be broken into smaller, simpler ones. For example, the
proposition

x = 10 and 1 < y,

consists of the two simpler propositions x = 10, 1 < y combined with the word ‘and’. In
propositional logic, one writes

x = 10 ∧ 1 < y.

To improve readability, one can place paranteses around parts of the expression and for
example write:

(x = 10) ∧ (1 < y).

To be very precise on what ∧means, let us describe exactly when an expression of the form
P ∧Q is true. We will do this in the following definition

Definition 1.2.1
Let P and Q be two logical propositions. Then P ∧ Q, pronounced as “P and Q", is true
precisely if P is true and Q is true. In table form:
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P Q P ∧Q

T T T
F T F
T F F
F F F

The table in this definition is called a truth table for the logical proposition P ∧ Q. Let us
explain in more detail how such a truth table works. The two variables P and Q can both be
true or false independently of each other. In other words: P and Q can take the value T and F
independently. Therefore there are in total four cases to consider:

1) P and Q both take the value T,

2) P takes the value F and Q takes the value T,

3) P takes the value T and Q takes the value F,

4) P and Q both take the value F.

For each of these four possibilities the truth table of P ∧Q specifies which value P ∧Q takes.
For example if P takes the value T and Q takes the value F, we read off from the third row of
the truth table that P ∧Q takes the value F This is why the truth table of P ∧Q has four rows.
Each row specifies which value P ∧Q takes if P and Q take specific values.

More complicated logical propositions also have a truth table. Here is one example:

Example 1.2.1
Let P, Q, R be three logical propositions. Now consider the logical proposition P ∧ (Q ∧ R).
We have put parentheses around Q ∧ R to clarify that we consider P combined with Q ∧ R
using ∧. The logical proposition (P ∧Q) ∧ R may look similar, but is strictly speaking not the
same as P ∧ (Q ∧ R)!

To determine when P ∧ (Q ∧ R) is true and when it is false, we use Definition 1.2.1 and
compute its truth table. Since we have three variables now, the truth table will contain eight
rows: one row for each possible value taken by P, Q, and R. Therefore the table starts like
this:

P Q R

T T T
F T T
T F T
F F T
T T F
F T F
T F F
F F F
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Since P∧ (Q∧ R) consists of P and Q∧ R, it is convenient to first add a column concerning
Q ∧ R. To fill out the values Q ∧ R takes in each of the eight rows, we use Definition 1.2.1.
Indeed, even though in Definition 1.2.1 the logical propositions were called P and Q, we can
also apply it for the logical proposition Q and R. For example, in the first two rows, both Q
and R take the value T, which according to Definition 1.2.1 means that then also Q ∧ R takes
the value T. In the third and fourth row Q takes the value F and R the value T. Hence in these
rows, Q ∧ R takes the value F. Continuing like this, we then obtain:

P Q R Q ∧ R

T T T T
F T T T
T F T F
F F T F
T T F F
F T F F
T F F F
F F F F

Next we add a column for P ∧ (Q ∧ R) and determine the truth values it takes for each of
the eight rows. Suppose for example that P, Q, R take the values F, T, T. This correspond to the
values specified in the second row of the truth table. In that case, we see from the column that
we have just computed, that Q ∧ R takes the value T. But then applying Definition 1.2.1 for
the logical propositions P and Q ∧ R, we see that P ∧ (Q ∧ R) takes the value F. Continuing
like this, we can compute the final column for P ∧ (Q ∧ R) and complete the truth table:

P Q R Q ∧ R P ∧ (Q ∧ R)

T T T T T
F T T T F
T F T F F
F F T F F
T T F F F
F T F F F
T F F F F
F F F F F

We can think of ∧ as a logical operator: given two logical propositions P and Q, no matter
how complicated P and Q already are, it produces a new logical proposition P ∧Q. In this
light ∧ is sometimes called the conjunction and P ∧Q called the conjunction of P and Q.

Let us now introduce more logical operators. In Example 1.1.1, we knew that all labels were
wrong initially. Hence, the first jar on the left does not have label “Apples”. This means that
it has label “Both” or “Pears”. This is formalized in the next definition:

Definition 1.2.2
Let P and Q be two propositions. Then P ∨ Q, pronounced as “P or Q", is defined by the
following truth table:
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P Q P ∨Q

T T T
F T T
T F T
F F F

The operator ∨ is called disjunction and P ∨Q the disjunction of P and Q. A further logical
operator is the negation of a logical proposition. We have already used this as well in Example
1.1.1. There we said that the labels were wrong. In particular we know that the true label of
the middle jar was not “Both”. Also a proposition like x ̸= 0 is simply the negation of the
proposition x = 0. We now formally define the negation operator.

Definition 1.2.3
Let P be a proposition. Then ¬P, pronounced as “not P", is defined by the following truth
table:

P ¬P

T F
F T

As operator, ¬ is called the negation, and ¬P is therefore also called the negation of P. We now
already have enough ingredients to create various logical propositions. Let us consider an
example.

Example 1.2.2
Consider the logical proposition P ∨ (Q ∧ ¬P). We determine its truth table. Having only
two variables P and Q, this truth table will contain four rows. Further P ∨ (Q ∧ ¬P) contains
the simpler logical proposition Q ∧ ¬P, which in turn contains the logical proposition ¬P.
Therefore, when computing the truth table of P ∨ (Q ∧ ¬P), it makes sense to add a column
for ¬P and one for Q ∧ ¬P and in this way gradually work our way towards computing the
truth values of the whole logical proposition P ∨ (Q ∧ ¬P). Then the result is the following:

P Q ¬P Q ∧ ¬P P ∨ (Q ∧ ¬P)

T T F F T
F T T T T
T F F F T
F F T F F

Let us compare the truth table we just computed and the truth table of P ∨Q from Definition
1.2.2. The comparison shows that for given truth values of P and Q, the truth values of
P ∨ (Q ∧ ¬P) and P ∧Q are always the same! In other words: if we take the three columns
of the truth table we just computed corresponding to P, Q and P ∨ (Q ∧ ¬P), then we get
precisely the same table as the truth tabel from Definition 1.2.2. Apparently, two different
looking logical propositions, can have the same truth tables.
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1.3 Logical consequence and equivalence

The logical operators we introduced so far, ¬, ∧ and ∨, allow us to write down a variety of
logical propositions in a precise way. However, the whole point of logic is to make arguments
and reasoning more precise. We would like to be able to say something like, if P is true, then
we may conclude that Q also is true. For example, if x > 0, then also x > −1. To formalize
this, we use the logical symbol⇒, called an implication, and write P ⇒ Q. We define it by
giving its truth table.

Definition 1.3.1
The logical proposition P⇒ Q is defined by the following truth table:

P Q P⇒ Q

T T T
F T T
T F F
F F T

In common language one often pronounces P ⇒ Q as “P implies Q” or “if P then Q”. It is
sometimes convenient to write the logical proposition P⇒ Q as Q⇐ P.

There are two special types of logical propositions that are simply denoted by T and F. The
logical proposition T simply stands for a statement that is always true, like for example the
statement 5 = 5. Such a logical proposition is called a tautology. By contrast, the logical
proposition F, stands for a statement that is always false, like for example 5 ̸= 5. This is
called a contradiction. Going back to implications, saying that P⇒ Q is always true for certain
logical propositions P and Q, really means that we claim that P⇒ Q is a tautology. If P⇒ Q
is a tautology, then the truth table of the implication from Definition 1.3.1, shows that P is
true implies that Q is true as well.

If P⇒ Q is a tautology, then one says that Q is a logical consequence of P, or alternatively that
Q is implied by P. This explains why the symbol⇒ is called an implication. Let us consider
an example of a logical consquence.

Example 1.3.1
Let P and Q be logical propositions. Then we claim that the logical proposition P ∨ Q is
a logical consequence of P. To show this, we need to verify that the logical proposition
P⇒ (P∨Q) is always true. In other words, we need to show that P⇒ (P∨Q) is a tautology.
In order to compute the truth table of P ⇒ (P ∨Q), we proceed in the usual way. First we
write down all combinations of truth values of P and Q:
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P Q

T T
F T
T F
F F

Next, we add a column for P ∨Q for convenience, since it occurs in the more complicated
proposition P⇒ (P∨Q) we are looking at. Using Definition 1.2.2, we then find the following:

P Q P ∨Q

T T T
F T T
T F T
F F F

Now we add a column for P ⇒ (P ∨ Q) and use Definition 1.3.1 to compute its truth
values from the ones of P and P ∨Q. The result is the truth table we wanted to compute:

P Q P ∨Q P⇒ (P ∨Q)

T T T T
F T T T
T F T T
F F F T

Since the column below the expression P ⇒ (P ∨ Q) only contains T’s, we can indeed
conclude that P ⇒ (P ∨Q) is a tautology. In particular, we can now be sure that P implies
P ∨Q. Another way of saying this is that P ∨Q is a logical consequence of P.

Stronger than an implication is what is known as a bi-implication, denoted by⇔ and defined
as:

Definition 1.3.2
The logical proposition P⇔ Q, pronounced as “P if and only if Q”, is defined by the following
truth table:

P Q P⇔ Q

T T T
F T F
T F F
F F T

The phrase “P if and only if Q” for the logical proposition P ⇔ Q can be broken up in
two parts “P if Q” and “P only if Q”. The first part, “P if Q” is just a way of saying that
P ⇐ Q, while “P only if Q” boils down to the statement P ⇒ Q. This explains that name
bi-implication for the symbol⇔: it in fact combines two implications in one symbol. We will
see later in Theorem 1.3.4, Equation (1.22) in a more formal way that a bi-implication can
indeed in this way be expressed as two implications.
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Example 1.3.2
In Example 1.2.2 we noted that the truth tables of P ∨Q is identical to that of P ∨ (Q ∧ ¬P).
What does this mean for the truth table of the logical proposition (P ∨Q)⇔ (P ∨ (Q ∧ ¬P))?
Using Definition 1.2.2 and Example 1.2.2, we see that the following table is correct:

P Q P ∨Q P ∨ (Q ∧ ¬P)

T T T T
F T T T
T F T T
F F F F

Now let us add a column to this table for the logical proposition (P ∨Q)⇔ (P ∨ (Q ∧ ¬P))
and use Definition 1.3.2. We obtain:

P Q P ∨Q P ∨ (Q ∧ ¬P) (P ∨Q)⇔ (P ∨ (Q ∧ ¬P))

T T T T T
F T T T T
T F T T T
F F F F T

Since the rightmost column only contains T, we can conclude that (P ∨Q)⇔ (P ∨ (Q ∧ ¬P))
is a tautology.

The point now is that if R ⇔ S is a tautology for some, possibly complicated, logical
propositions R and S, then the truth tables of R and S are the same. In other words: if
R is true, then S is true as well, but also the converse holds: if S is true, then R is true as
well. Therefore, if R ⇔ S is a tautology, one says that the logical propositions R and S are
logically equivalent. From Example 1.3.2, we can conclude that the logical propositions P ∨Q
and P ∨ (Q ∧ ¬P) are logically equivalent. The point of this example is that it shows that
sometimes one can rewrite a logical statement in a simpler form. There are several convenient
tautologies that can be used to rewrite logical propositions in a simpler form. We start by
giving some involving conjunction, disjunction and negation.

Theorem 1.3.1
Let P, Q and R be logical propositions. Then all the following expressions are tautologies.

P ∧ P ⇔ P (1.1)

P ∨ P ⇔ P (1.2)

P ∧Q ⇔ Q ∧ P (1.3)

P ∨Q ⇔ Q ∨ P (1.4)

P ∧ (Q ∧ R) ⇔ (P ∧Q) ∧ R (1.5)

P ∨ (Q ∨ R) ⇔ (P ∨Q) ∨ R (1.6)

P ∧ (Q ∨ R) ⇔ (P ∧Q) ∨ (P ∧ R) (1.7)

P ∨ (Q ∧ R) ⇔ (P ∨Q) ∧ (P ∨ R) (1.8)

Proof. To prove that one of the mentioned logical propositions is a tautology, we compute a
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truth table for it. Doing this for all of them would fill quite a few pages, but let us consider
one of them, namely Equation (1.5). We need to show that P ∧ (Q ∧ R) ⇔ (P ∧ Q) ∧ R is a
tautology. In Example 1.2.1, we already computed the truth table of P∧ (Q∧ R), so we do not
have to redo that here. What we will need to do is to compute the truth table of (P ∧Q) ∧ R,
in a way similar to what we did for P ∧ (Q ∧ R) in Example 1.2.1, and then in the last step
compute the truth table of P ∧ (Q ∧ R) ⇔ (P ∧ Q) ∧ R using Definition 1.3.2. The result is
the following:

P Q R P ∧ (Q ∧ R) P ∧Q (P ∧Q) ∧ R P ∧ (Q ∧ R)⇔ (P ∧Q) ∧ R

T T T T T T T
F T T F F F T
T F T F F F T
F F T F F F T
T T F F T F T
F T F F F F T
T F F F F F T
F F F F F F T

We see that the logical proposition P∧ (Q∧ R)⇔ (P∧Q)∧ R only takes the truth value T, no
matter what values P, Q and R take. Hence we can conclude that P ∧ (Q ∧ R)⇔ (P ∧Q) ∧ R
is a tautology.

All the other items in the theorem can be shown similarly, but we will not do so here. Readers
are encouraged to prove at least one other item themselves.

In words, Equation (1.6) states that when taking the disjunction of three logical propositions, it
does not matter how you place the parentheses. Therefore, it is common to write P∨Q∨R and
leave the parentheses out completely. Similarly Equation (1.5) says that for the conjunction of
three logical propositions, you can place the parentheses as you want. Therefore, on can write
P ∧Q ∧ R without any ambiguity. This situation changes if both conjunction and disjunction
occur in the same expression. Then parentheses do matter. We consider an example.

Example 1.3.3
Consider the logical propositions (P ∧Q) ∨ R and P ∧ (Q ∨ R). We claim that these are not
logically equivalent. To show this, we could compute their truth tables, but in fact to show
that two logical propositions are not logically equivalent, all we need to do is to find values
for P, Q and R such that (P ∧Q) ∨ R and P ∧ (Q ∨ R) are not both true. Let us for example
find out when (P ∧ Q) ∨ R is false. This happens precisely if P ∧ Q is false and R is false.
Hence (P ∧ Q) ∨ R is false precisely if P and Q are not both true and R is false. However,
P ∧ (Q ∨ R) will be false whenever P is false. Hence if (P, Q, R) take the values (F, T, T), then
(P ∧ Q) ∨ R is true, but P ∧ (Q ∨ R) is false. This means that in the truth table of the two
expressions, there is a row looking as follows:
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P Q R . . . (P ∧Q) ∨ R P ∧ (Q ∨ R)
...
F T T . . . T F
...

This is in fact enough to conclude that the logical propositions (P∧Q)∨ R and P∧ (Q∨ R)
are not logically equivalent. Indeed, if they would be, the logical proposition (P ∧Q) ∨ R⇔
P ∧ (Q ∨ R) would be a tautology and hence only take the value T, but based on the previous,
we see that its truth table actually contains the following row:

P Q R . . . (P ∧Q) ∨ R P ∧ (Q ∨ R) (P ∧Q) ∨ R⇔ P ∧ (Q ∨ R)
...
F T T . . . T F F
...

This shows that (P∧Q)∨ R⇔ P∧ (Q∨ R) is not a tautology and therefore that the logical
propositions (P ∧Q) ∨ R and P ∧ (Q ∨ R) indeed are not logically equivalent.

There are a few more tautologies that are useful when dealing with logical propositions.
Apart from the conjunction ∧ and disjunction ∨, these also involve the negation ¬. We leave
the proofs to the reader.

Theorem 1.3.2
Let P, Q and R be logical propositions. Then all the following expressions are tautologies.

P ∨ ¬P ⇔ T (1.9)

P ∧ ¬P ⇔ F (1.10)

P ⇔ ¬(¬P) (1.11)

¬(P ∨Q) ⇔ ¬P ∧ ¬Q (1.12)

¬(P ∧Q) ⇔ ¬P ∨ ¬Q (1.13)

¬T ⇔ F (1.14)

¬F ⇔ T (1.15)

Identities (1.12) and (1.13) are called the De Morgan’s laws. Finally, there are a few tautologies
describing how ∧ and ∨ interact with tautologies and contradictions. Again, we leave the
proofs of these to the reader.

Theorem 1.3.3
Let P, Q and R be logical propositions. Then all the following expressions are tautologies.

P ∨ F ⇔ P (1.16)

P ∧ T ⇔ P (1.17)

P ∧ F ⇔ F (1.18)

P ∨ T ⇔ T (1.19)
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Using the list of tautologies in Theorems 1.3.1, 1.3.2 and 1.3.3 one can rewrite logical
proposition in a logically equivalent form. Let us consider an example.

Example 1.3.4
As in Examples 1.2.2 and 1.3.2, consider the logical proposition P∨ (Q∧¬P). We have already
seen that it is logically equivalent to P ∨Q, but let us now show this using Theorem 1.3.1 and
not by computing truth tables. First of all, using (1.8), we see that

P ∨ (Q ∧ ¬P)⇔ (P ∨Q) ∧ (P ∨ ¬P).

Using (1.9), we conclude that

P ∨ (Q ∧ ¬P)⇔ (P ∨Q) ∧ T,

which by (1.17) can be simplified to

P ∨ (Q ∧ ¬P)⇔ P ∨Q.

In other words, using Theorem 1.3.1, one can prove logical equivalences without having to
compute truth tables. Of course when proving this theorem, one needs to compute several
truth tables, but this only needs to be done once. Generally speaking in mathematics, the
point of a theorem is that it contains one or several useful results with a proof. Once the proof
is given, one can use the result in the theorem whenever needed without having to prove the
theorem again.

The tautologies in Theorem 1.3.1 only involve negation, conjunction and disjunction. Here
are three very useful ones that involve implication and bi-implication as well.

Theorem 1.3.4
Let P and Q be logical propositions. Then all the following expressions are tautologies.

(P⇒ Q) ⇔ (¬P ∨Q) (1.20)

(P⇒ Q) ⇔ (¬Q⇒ ¬P) (1.21)

(P⇔ Q) ⇔ (P⇒ Q) ∧ (Q⇒ P) (1.22)

P ⇔ (¬P⇒ F) (1.23)

Proof. As in Theorem 1.3.1, these items can be shown by computing truth tables for each of
them. We will do this for the second item and leave the others to the reader:

P Q P⇒ Q ¬P ¬Q ¬Q⇒ ¬P (P⇒ Q)⇔ (¬Q⇒ ¬P)

T T T F F T T
F T T T F T T
T F F F T F T
F F T T T T T
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Since the right column only contains T, we conclude that (P⇒ Q)⇔ (¬Q⇒ ¬P) indeed is
a tautology.

Equation (1.20) means that in principle, an implication can be expressed using negation and
disjunction. Equation (1.21) is called contraposition. It means that if one wants to prove that Q
is a logical consequence of P, it is also fine to show that ¬P is a logical consequence of ¬Q.
Let us consider a small example of contraposition.

Example 1.3.5
Consider the statement that for any real numbers x and y it holds that

(x · y = 0)⇒ ((x = 0) ∨ (y = 0)).

This is a true statement, but in this example we do not want to prove it, but simply to figure
out what the contraposition of this statement is.

First of all, the given statement is a logical proposition of the form P⇒ Q, where P is the
equation x · y = 0 and Q the proposition (x = 0) ∨ (y = 0). In words, the implication P⇒ Q
can be phrased as: if for some real numbers x and y, the equation x · y = 0 holds, then x = 0
or y = 0.

What is the contraposition of this? According to Equation (1.21) it is ¬Q ⇒ ¬P. When
used directly, we therefore find that the contraposition we are looking for, is

¬((x = 0) ∨ (y = 0))⇒ ¬(x · y = 0).

However, we can simplify this a bit. First of all, one can rewrite ¬(x · y = 0) as x · y ̸= 0.
Moreover, using Equation (1.12), one of the DeMorgan laws, we can rewrite ¬((x = 0)∨ (y =

0)) as ¬(x = 0) ∧ ¬(y = 0), which in turn can be written as (x ̸= 0) ∧ (y ̸= 0). Therefore the
contraposition of

(x · y = 0)⇒ (x = 0) ∨ (y = 0)

can be given as
((x ̸= 0) ∧ (y ̸= 0))⇒ (x · y ̸= 0).

More in words: the contraposition of the statement “if x · y = 0, then x = 0 or y = 0" simply
is “if x ̸= 0 and y ̸= 0, then x · y ̸= 0".

This last statement is a true statement, since it is logically equivalent to the true statement
that we started with in this example.

Equation (1.22) states that two logical propositions are logically equivalent precisely if they
are logical consequences of each other. Quite often it is easier to show that P⇒ Q and Q⇒ P
are true separately, then to show directly that P⇔ Q is true. Also Equation 1.23 is sometimes
used to prove logical statements: instead of showing that P is true, one assumes that P is false
and then tries to obtain a contradiction. If one does obtain a contradiction, one can conclude
that ¬P⇒ F is true. But then by Equation (1.23), P is also true. This method is called a proof
by contradiction.
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In later chapters, we will regularly use Equations (1.21), (1.22) and (1.23), when investigating
various mathematical statements. In the next section, we will also show uses of logic in
mathematics.

1.4 Use of logic in mathematics

Logic can help to solve mathematical problems and to clarify the mathematical reasoning. In
this section, we give a number of examples of this.

Example 1.4.1
Question: Determine all real numbers x such that −x ≤ 0 ≤ x− 1.

Answer: −x ≤ 0 ≤ x− 1 is really shorthand for the logical proposition

−x ≤ 0 ∧ 0 ≤ x− 1.

The first inequality is logically equivalent to the inequality x ≥ 0, while the second one is
equivalent to x ≥ 1. Hence a real number x is a solution if and only if

x ≥ 0 ∧ x ≥ 1.

The answer is therefore all real numbers x such that x ≥ 1.

Example 1.4.2
Question: determine all real numbers x such that 2|x| = 2x + 1. Here |x| denotes the absolute
value of x.

Answer: if x < 0, then |x| = −x, while if x ≥ 0, then |x| = x. Hence it is convenient to
consider the cases x < 0 and x ≥ 0 separately. More formally, we have the following sequence
of logically equivalent statements:

2|x| = 2x + 1
⇔
2|x| = 2x + 1 ∧ (x < 0 ∨ x ≥ 0)
⇔
(2|x| = 2x + 1 ∧ x < 0) ∨ (2|x| = 2x + 1 ∧ x ≥ 0)
⇔
(−2x = 2x + 1 ∧ x < 0) ∨ (2x = 2x + 1 ∧ x ≥ 0)
⇔
(−4x = 1 ∧ x < 0) ∨ (0 = 1 ∧ x ≥ 0)
⇔
(x = −1/4 ∧ x < 0) ∨ (F ∧ x ≥ 0)
⇔
x = −1/4 ∨ F
⇔
x = −1/4
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Hence the only solution to the equation 2|x| = 2x + 1 is x = −1/4.

Example 1.4.3
Question: Determine all nonnegative real numbers such that

√
x = −x.

Observation: It is tempting to take the square on both sides, one then obtains x = x2, and
then to conclude that x = 0 and x = 1 are the solutions to the equation

√
x = −x. However,

x = 0 is indeed a solution, but x = 1 is not, since
√

1 ̸= −1. What went wrong?
Answer: The reasoning actually shows that if x satisfies the equation

√
x = −x, then

x = x2, which in turn implies that x = 0 or x = 1. Hence the following statement is completely
correct:

(
√

x = −x)⇒ (x = 0∨ x = 1).

In that sense, nothing went wrong and any solution to the equation
√

x = −x must indeed be
either x = 0 or x = 1. What may cause confusion is that this does not at all mean that x = 0
and x = 1 both are solutions to the equation

√
x = −x. This would namely amount to the

statement
(x = 0∨ x = 1)⇒ (

√
x = −x),

which is different from what we have shown and actually is not true. To solve the question,
all we need to do it to check if the potential solutions x = 0 and x = 1 really are solutions. We
then obtain that x = 0 is the only solution.

1.5 Epilogue: the logic problem on labels and jars

Let us return to the problem of jars and labels from the first section.

Example 1.5.1
Let us denote by P1(A) the statement that the left jar has true label “Apples”. Similarly, let
us write P1(B), respectively P1(P), for the statement that the left jar has true label “Both”,
respectively “Pears”. We then know that P1(B) ∨ P1(P) is always true, since the left jar cannot
have label “Apples”. Similarly for the middle jar, we can introduce P2(A), P2(B), and P2(P)
for the statements that the middle jar has true label “Apples”, “Both”, “Pears” and conclude
that P2(A)∨ P2(P) is a true statement. Similarly for the right jar, we obtain that P3(A)∨ P3(B)
is a true statement. In conclusion,

(P1(B) ∨ P1(P)) ∧ (P2(A) ∨ P2(P)) ∧ (P3(A) ∨ P3(B)) (1.24)

is always true. Using Equation (1.7) repeatedly, we can rewrite this to the logically equivalent
statement

(P1(B) ∧ P2(A) ∧ P3(A)) ∨ (P1(B) ∧ P2(A) ∧ P3(B)) ∨
(P1(B) ∧ P2(P) ∧ P3(A)) ∨ (P1(B) ∧ P2(P) ∧ P3(B)) ∨
(P1(P) ∧ P2(A) ∧ P3(A)) ∨ (P1(P) ∧ P2(A) ∧ P3(B)) ∨
(P1(P) ∧ P2(P) ∧ P3(A)) ∨ (P1(P) ∧ P2(P) ∧ P3(B)).
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This statement is still valid, since it is logically equivalent to the statement from Equation 1.24.
Since we know that in the correct labelling each label has to be used exactly once, a statement
like P1(B) ∧ P2(A) ∧ P3(A) where the same label occurs twice, cannot be correct, that is to say
that it is a contradiction. Using that disjunction absorbs contradictions, see Equation (1.16),
we therefore conclude that

(P1(B) ∧ P2(P) ∧ P3(A)) ∨ (P1(P) ∧ P2(A) ∧ P3(B)) (1.25)

is necessarily always true.
What this shows is that there are only two possible correct ways to label the jars. This is

already very helpful, since we did not even draw any fruit yet! Now let us investigate what
the effect of drawing from a jar is. If we draw from the left jar, we do not learn much about
the label of that jar. Indeed, since the true label is “Both” or “Pears”, if we draw an apple
from it, we know the true label cannot be “Pears”, but if we draw a pear from it, the true label
could still be “Both” or “Pears”. Similarly drawing from the right jar, may not determine its
true label. The situation is different for the middle jar. Since the true label of the middle jar is
“Apples” or “Pears”, if we draw an apple from it, its true label cannot be “Pears”. Apparently,
it must be “Apples” in that case. Similarly, if we draw a pear from the middle jar, its true
label is “Pears”. We arrive at the following solution for the problem:
Solution:

Step 1: Draw from the middle jar. Since we know all labels are wrong, the middle jar, that
has label “Both”, contains either only apples, or only pears. If we draw an apple from the
middle jar, then we can conclude the correct label should have been “Apples,” while if we
draw a pear from the middle jar, then we can conclude that that correct label should have
been “Pears”.

Step 2: We know that the logical proposition in Equation 1.25 is always true. This
implies that if we found in Step 1 that the correct label for the middle jar is “Apples”,
then P1(P) ∧ P2(A) ∧ P3(B) is true, while if the correct label of the middle jar was identified
as “Pears” in Step 1, then P1(B) ∧ P2(P) ∧ P3(A) is true.
Conclusion: We only need to draw once! After that we can identify all three labels correctly.
Moreover, we have actually found a simple step-by-step procedure to determine the correct
labelling. This is an example of what one calls an algorithm. To make it look more like a
computer algorithm, we give it as follows:

Algorithm 1 Label Identifier

1: Draw from the jar labelled “Both” and denote the result by R.
2: if R = apple then
3: Identify the labels of the jars as “Pears”,“Apples”,“Both”,
4: else
5: Identify the labels of the jars as “Both”,“Pears”,“Apples”.

There are many puzzles of this type. Here is another one. Feel free to try to solve it yourself
before reading the solution.
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Example 1.5.2
A police officer is investigating a burglary and was able to narrow the number of suspects
down to three. The officer is absolutely sure that one of these three committed the crime
and that the perpetrator worked alone. When questioning the three suspects, the following
statements are made by the suspects:

Suspect1: “Suspect2 did it”;
“I wasn’t there”;
“I am innocent”

Suspect2: “Suspect3 is innocent”;
“everything Suspect 1 said is a lie”;
“I didn’t do it”

Suspect3: “I didn’t do it”;
“Suspect1 is lying if he said that he wasn’t there”;
“Suspect2 is lying if he said that everything that Suspect1 said is a lie”

Confused, the police officer goes to the boss, the police commissioner. The police
commissioner says: “I know these suspects quite well and every single one of them always
lies at least once in their statements.” Can you help the police officer to figure out which
suspect is guilty of the burglary?

Solution Let us introduce some logical proposition to analyze the situation. First of all,
P1 is the statement “Suspect1 did it” and similarly P2 stands for “Suspect2 did it”, P3 for
“Suspect3 did it”. With this notation in place, we know that

P1 ∨ P2 ∨ P3

is true, since the police officer is absolutely sure that one of the three suspects committed the
burglary.

Now let us analyze the statements from the suspects:

Statements from Suspect1:
“Suspect2 did it”; this is just P2

“I wasn’t there”; we call this R1

“I am innocent”; this amounts to ¬P1

Now let us consider the insight from the police commissioner: any of the three suspects
has lied at least once in their statements. In particular, Suspect1 is lying, which means that
¬P2 ∨ ¬R1 ∨ ¬(¬P1) is a true statement. Using Equation (1.11), we conclude that

¬P2 ∨ ¬R1 ∨ P1

is a true statement as well.

Statements from Suspect2:
“Suspect3 is innocent”; this is ¬P3

“everything Suspect 1 said is a lie”; this amount to ¬P2 ∧ ¬R1 ∧ P1

“I didn’t do it”; this is ¬P2
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Now let us again consider the insight from the police commissioner. For Suspect 2 we
obtain that P3 ∨ ¬(¬P2 ∧ ¬R1 ∧ P1) ∨ P2 is a true statement. One can simplify this expression
using Theorem 1.3.1. First of all, using Equation (1.13), the proposition ¬(¬P2 ∧ ¬R1 ∧ P1)

is logically equivalent to ¬(¬P2) ∨ ¬(¬R1) ∨ ¬P1), which in turn is logically equivalent to
P2 ∨ R1 ∨ ¬P1 using Equation (1.11). Substituting this in the original statement, we see that
P3 ∨ (P2 ∨ R1 ∨ ¬P1) ∨ P2 is a true statement. Simplifying P2 ∨ P2 to P2 using Equation (1.2),
we obtain that

P3 ∨ P2 ∨ R1 ∨ ¬P1

is a true statement as well.
The statements of Suspect3 are a bit involved, so before putting them in a table, let us

consider the last two statements. The second statement of Suspect3 is that “Suspect1 is lying
if he said that he wasn’t there”. In other words: “Suspect1 wasn’t there” ⇒ “Suspect1 is
lying”. However, the police commissioner already told us that the statement “Suspect1 is
lying” always is true. This means that the implication, “Suspect1 wasn’t there”⇒ “Suspect1
is lying”, is a true statement. Similarly, the third statement from Suspect3, “Suspect2 is lying
if he said that everything that Suspect1 said is a lie”, is true. Hence the second and third
statements from Suspect3 do not give us any information that we did not already know.

Statements from Suspect3:
“I didn’t do it”; this is ¬P3

“Suspect1 is lying if he said that he wasn’t there”;
“Suspect2 is lying if he said that everything that Suspect1 said is a lie;

Now let us for the third time consider the insight from the police commissioner. First of all,
the given insight implies that the second are third statements from Suspect3 are true, since
we know that Suspect1 and Suspect2 are lying. Since by the same insight, Suspect3 lied, we
conclude that ¬P3 must be a lie. In other words, P3 must be true.

Collecting everything together, we have determined that the following are all true:
P1 ∨ P2 ∨ P3, ¬P2 ∨ ¬R1 ∨ P1, P3 ∨ P2 ∨ R1 ∨ ¬P1, P3. The fact that P3 is true, immediately
implies that the only possibility is that Suspect3 has committed the burglary and that as a
consequence Suspect1 and Suspect2 are innocent. However, we still need to check that in
this case all the other statement we obtained are indeed true. If not, this would mean that no
solution exists and that the police officer or the police commissioner is wrong. First of all, if P3

takes the value T, then P1 ∨ P2 ∨ P3 and P3 ∨ P2 ∨ R1 ∨¬P1 will be true by the definition of the
disjunction. This leaves ¬P2 ∨ ¬R1 ∨ P1. Since Suspect2 is innocent, P2 takes the value F and
as a consequence, ¬P2 takes the value T. Hence indeed ¬P2 ∨ ¬R1 ∨ P1 is a true statement.
This means that there is nothing contradictory. The police should arrest Suspect3!
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