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Note 3

Complex numbers

3.1 Introduction to the complex numbers

In this chapter we will introduce the set of complex numbers, commonly denoted by C.
These complex numbers turn out to be extremely useful and no modern scientist or
engineer can do without them anymore. Let us first take a short look at some other
sets of numbers in mathematics. The natural numbers N = {1, 2, 3, . . . } have, as their
name already suggests, a very natural interpretation. They come up when one wants to
count things. The integers Z = {. . . ,−2,−1, 0, 1, 2, . . . } came around when differences
of natural numbers were needed. We have also seen the set of rational numbers Q in
Example 2.4, which consists of fractions of integers.

One may think that the set of rational numbers Q contains all numbers one would ever
need, but this is not the case. For example, it turns out that the equation z2 = 2 does
not have a solution in Q. Instead of saying that such an equation simply does not have
any solutions, mathematicians extended the set of rational numbers Q to the set of real
numbers R. Within R, the equation z2 = 2 has two solutions, namely

√
2 and −

√
2.

The set R is very large and contains many interesting numbers, such as e, the base of
the natural logarithm, and π. Often, the real numbers R are represented as a straight
line, which we will call the real line. Every point on the real line corresponds to a real
number (see Figure 3.1).

Again for some time it was thought that the set of real numbers R would contain all
numbers one would ever want to use. But what about an equation like z2 = −1? It
is clear that within the set of real numbers, this equation does not have any solutions.
We are again in the same situation as before with the equation z2 = 2 before the real
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Figure 3.1: The real line.
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numbers were introduced. We simply try to find a set of numbers even larger than R

that does contain a solution to the equation z2 = −1. It would be natural to denote a
solution to z2 = −1 by

√
−1, but it is more common to write i instead. Hence we want

that i2 = −1. Now we simply define the complex numbers as follows.

Definition 3.1

The set C of complex numbers is defined as:

C = {a + bi | a, b ∈ R}.

The complex number i satisfies the rule

i2 = −1.

The expression a + bi should simply be thought of as a polynomial in the variable i.
Hence it holds for example that a + bi = a + ib. Also, it makes no difference to write
a + b · i instead of a + bi. Hence we have for all a, b ∈ R:

a + bi = a + b · i = a + i · b = a + ib.

Finally, just like for polynomials, a + bi denotes exactly the same complex number as
bi + a.

For any a, b, c, d ∈ R, the two complex numbers a + bi and c + di are the same if and
only if a = c and b = d. If a = 0 it is customary to simplify 0 + bi to bi. In other words
0 + bi = bi. Similarly, if b = 0, one typically writes a instead of a + 0i. Finally, if b = 1,
the 1 in front of the i is often omitted. For example, 5 + 1i = 5 + i. Using all the above,
one has for example i = 1i = 0 + 1i = 0 + 1 · i. The set of complex numbers C contains
the set of real numbers R, because for a ∈ R, we have a = a + 0i. In other words:
R ⊆ C. In fact R ( C, since i ∈ C, while i 6∈ R.
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The complex numbers can represented graphically, but now as a plane called the complex
plane. A complex number a + bi is represented as the point (a, b) in that plane. This
means that the number i has coordinates (0, 1) and therefore will lie on the second axis.
The number i and some other complex numbers have been drawn in the complex plane
in Figure 3.2.

The axes in the complex plane have a special name. The horizontal axis is called the real
axis, because all real numbers lie on it. Indeed, a number on the real axis in the complex
plane will be of the form a + 0i for some a ∈ R.

The vertical axis is called the imaginary axis. In fact, the symbol i is an abbreviation of
the word imaginary. The numbers that lie on the vertical axis are called purely imaginary
numbers. The expressions “complex numbers” and “imaginary numbers” are historical
and show that at some point in time scientists struggled to understand these numbers.
Nowadays, the complex numbers are completely standard.

Figure 3.2: The complex plane.
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The coordinates for a complex number z ∈ C in the complex plane have a special name.
The first coordinate is called the real part of z (denoted by Re(z)), while the second
coordinate of z is called the imaginary part (denoted by Im(z)). If one knows Re(z) and
Im(z), one can compute the number z, because it holds that

z = Re(z) + Im(z)i.
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If a complex number z is written in the form Re(z) + Im(z)i, then one says that the num-
ber z is written in rectangular form. For a given complex number z, the pair (Re(z), Im(z))
is called the rectangular coordinates of z.

Example 3.2

Compute the rectangular coordinates of the following complex numbers:

1. 2 + 3i

2.
√

2

3. i

Answer:

1. The number 2 + 3i is in rectangular form. Therefore, we can read off the real and
imaginary part directly. We have Re(2 + 3i) = 2 and Im(2 + 3i) = 3. Hence the
rectangular coordinates of the complex number 2 + 3i are (2, 3).

2. The number
√

2 is a real number, but we can also view it as a complex number, since√
2 =
√

2 + 0i. From this we see that Re(
√

2) =
√

2 and Im(
√

2) = 0. All real numbers
have in fact imaginary part equal to 0. The rectangular coordinates of

√
2 are (

√
2, 0).

3. The number i is a purely imaginary number and one could also write i = 0 + 1 · i.
Therefore we have Re(i) = 0 and Im(i) = 1. All purely imaginary numbers have real
part 0. The rectangular coordinates of i are (0, 1).

3.2 Arithmetic with complex numbers

Now that we have introduced the complex numbers, we can start to investigate how
much structure they have. We are used to being able to add two numbers, subtract
them, multiply them and divide them. It is not clear at this point if this can be done
with complex numbers, but we will see that this is possible.

We start by defining an addition and a subtraction.
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Definition 3.3

Let a, b, c, d ∈ R and let a + bi and c + di be two complex numbers in C written in
rectangular form. Then we define:

(a + bi) + (c + di) = (a + c) + (b + d)i

and
(a + bi)− (c + di) = (a− c) + (b− d)i.

The addition or subtraction of two complex numbers is very similar to the addition or
subtraction of two polynomials of degree one (polynomials will be defined more pre-
cisely in Definition 4.1). One simply collect the terms not involving i and the terms
involving i. One can therefore remember the addition by for example adding the fol-
lowing intermediate steps:

(a + bi) + (c + di) = a + bi + c + di
= a + c + bi + di
= (a + c) + (b + d)i

The subtraction can be explained similarly. Graphically, the addition of complex num-
bers is like the addition of two vectors in the plane, see Figure 3.3. Note that (a + bi) +
(c + di) = (c + di) + (a + bi). Hence, when adding several complex numbers, the order
in which one adds these numbers does not matter.

Example 3.4

Simplify the following expressions and write the outcome in rectangular form.

1. (3 + 2i) + (1 + 4i)

2. (3 + 2i)− (1 + 4i)

3. (5− 7i)− i

4. (5− 7i)− (−10 + i)

Answer:
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Figure 3.3: Addition of complex numbers. Here it is shown graphically that
(3 + 2i) + (1 + 4i) = 4 + 6i.
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1. (3 + 2i) + (1 + 4i) = (3 + 1) + (2 + 4)i = 4 + 6i

2. (3 + 2i)− (1 + 4i) = (3− 1) + (2− 4)i = 2− 2i

3. (5− 7i)− i = 5 + (−7− 1)i = 5− 8i

4. (5− 7i)− (−10 + i) = (5− (−10)) + (−7− 1)i = 15− 8i

Now that we have the addition and subtraction of complex numbers in place, let us take
a look at their multiplication. Suppose for example that we would want to multiply the
complex numbers a + bi and c + di, where as usual a, b, c, d ∈ R. First of all, let us see
what happens if we simply multiply these expressions viewed as polynomials in the
variable i:

(a + bi) · (c + di) = a · (c + di) + bi · (c + di) = a · c + a · d i + b · c i + b · d i2.

Till now, the only thing we have done is to simplify the product to get rid of the paren-
theses. But now we should remember that the whole point of introducing i was that it
is a solution to the equation z2 = −1. Hence i2 = −1. If we use this, we get

(a + bi) · (c + di) = a · c + a · di + b · ci + b · d · (−1) = (a · c− b · d) + (a · d + b · c)i.

We arrived again at a complex number! All we needed to use were the usual rules of
computation (when we got rid of the parentheses) and the formula i2 = −1. Let us
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therefore take the formula we just found and put it as the formal definition of multipli-
cation of complex numbers.

Definition 3.5

Let a, b, c, d ∈ R and let a + bi and c + di be two complex numbers in C given in
rectangular form. We define:

(a + bi) · (c + di) = (a · c− b · d) + (b · c + a · d)i.

There is no need to memorize the above definition. To calculate a product of two com-
plex numbers in rectangular form, all one needs to do is to remember how we obtained
it: we simplified the product by multiplying out all terms and then used that i2 = −1.
Note that (a + bi) · (c + di) = (c + di) · (a + bi), so the order of the complex numbers
does not matter in a multiplication. One says that multiplication of complex numbers is
commutative. We will see in Section 3.3 that the multiplication of two complex numbers
also can be described geometrically.

Example 3.6

Simplify the following expression and write the result in rectangular form.

1. (1 + 2i) · (3 + 4i)

2. (4 + i) · (4− i)

Answer:

1.

(1 + 2i)(3 + 4i) = 1 · 3 + 1 · 4i + 2i · 3 + 2i · 4i

= 3 + 4i + 6i + 8i2

= 3 + 10i− 8

= −5 + 10i.
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2.

(4 + i) · (4− i) = 4 · 4 + 4 · (−i) + i · 4− i2

= 16− 4i + 4i− (−1)

= 17 + 0i

= 17.

In this case the outcome is actually a real number.

Part two of this example shows that the product of two nonreal numbers can be a real
number. This example is actually a special case of the following lemma:

Lemma 3.7

Let a, b ∈ R and z = a + bi a complex number in rectangular form. Then

(a + bi) · (a− bi) = a2 + b2.

Proof. We have

(a + bi) · (a− bi) = a · a + a · (−bi) + (bi) · a− b · bi2

= a2 − abi + abi− b2 · (−1)
= a2 + b2.

Motivated by this lemma, we introduce the following:

Definition 3.8

Let z ∈ C be a complex number. Suppose that z = a + bi in rectangular form. Then
we define the complex conjugate of z as z = a− bi. The function from C to C defined
by z 7→ z is called the complex conjugation function.
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Note that directly from this definition, we see that Re(z) = Re(z) and Im(z) = −Im(z).
Hence,

z = Re(z)− Im(z)i.

Therefore Lemma 3.7 implies that

z · z = Re(z)2 + Im(z)2. (3-1)

Note that this equation implies that for any z ∈ C, the product z · z is a real number.

Complex conjugation turns out to be useful for defining division of complex numbers.
We would like to be able to divide any complex number by any nonzero complex num-
ber. Note that we already are able to divide a complex number a + bi ∈ C by a nonzero
real number c ∈ R by defining:

a + bi
c

=
a
c
+

b
c

i a, b ∈ R and c ∈ R \ {0}.

The trick to divide any complex number z1 = a + bi by any nonzero complex number
z2 = c + di is to observe the following:

z1

z2
=

a + bi
c + di

=
a + bi
c + di

· c− di
c− di

=
(a + bi) · (c− di)

c2 + d2 . (3-2)

The numerator of the righthand side in this equation is just a product of two complex
numbers, which we know how to handle already. The denominator is a nonzero real
number, namely c2 + d2, and we also already know how to divide a complex number
by a real number. Let us make sure that the denominator c2 + d2 indeed is nonzero real
number. First of all, it is a real number, since c and d are real numbers. Second of all,
since the square of a real number cannot be a negative, we see that c2 ≥ 0, d2 ≥ 0. The
only way c2 + d2 = 0 can hold is therefore if both c2 = 0 and d2 = 0. But then c = 0 and
d = 0, implying that c + di = 0, contrary to our assumption that we were attempting to
divide by a nonzero complex number.

Looking back at the way we defined division by a complex number, we see that the
main ingredient was that if z1 ∈ C and z2 ∈ C\{0}, then the main idea for computing
z1/z2 was to multiply both numerator and denominator with the complex conjugate of
z2, since then the denominator becomes z2 · z2, which is a real number. Equation (3-2)
allows us therefore to divide by nonzero complex numbers. A special case of Equation
(3-2) is the following:

1
c + di

=
1

c + di
· c− di

c− di
=

c− di
c2 + d2 =

c
c2 + d2 −

d
c2 + d2 i. (3-3)

Now, let us consider some examples:
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Example 3.9

Simplify the following expressions and write the result in rectangular form.

1. 1/(1 + i)

2.
1 + 2i
3 + 4i

Answer:

1. Note that 1/(1+ i) is just a different way to write 1
1+i . Hence we obtain using Equation

(3-2), or alternatively Equation (3-3):

1/(1 + i) =
1 · (1− i)

(1 + i) · (1− i)
=

1− i
12 + 12 =

1− i
2

=
1
2
− 1

2
i.

2. Using Equation (3-2), we find

1 + 2i
3 + 4i

=
(1 + 2i)(3− 4i)
(3 + 4i)(3− 4i)

=
3− 4i + 6i− 8i2

32 + 42

=
3 + 2i + 8

9 + 16
=

11 + 2i
25

=
11
25

+
2

25
i.

Let us collect various properties of multiplication and addition together in one theorem.
We will not prove the theorem, though several of the statements have actually already
been shown in the previous.
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Theorem 3.10

Let C be the set of complex numbers and let z1, z2, z3 ∈ C be chosen arbitrarily. Then
the following properties are satisfied:

1. Addition and multiplication are associative: z1 + (z2 + z3) = (z1 + z2) + z3, and
z1 · (z2 · z3) = (z1 · z2) · z3.

2. Addition and multiplication are commutative: z1 + z2 = z2 + z1, and z1 · z2 =
z2 · z1.

3. Distributivity of multiplication over addition holds: z1 · (z2 + z3) = z1 · z2 + z1 ·
z3.

Further one has for complex numbers, similarly as for the real numbers, the following
properties:

Theorem 3.11

1. Addition and multiplication have a neutral element: the elements 0 and 1 in C

satisfy z + 0 = z and z · 1 = z for all z ∈ C.

2. Additive inverses exist: for every z ∈ C, there exists an element in C, denoted
−z, called the additive inverse of z, such that z + (−z) = 0.

3. Multiplicative inverses exist: for every z ∈ C \ {0}, there exists an element
in C, denoted by z−1 or 1/z, called the multiplicative inverse of z, such that
z · z−1 = 1.

Note that point two and three of Theorem 3.11 guarantee the existence of additive
and multiplicative inverses. It does not state how to compute these inverses though.
However, we have already seen how to compute these. To illustrate the computa-
tional method algorithmically, let us write down exactly how to compute−z and 1/z in
pseudo-code in the following example:



Note 3 3.3 MODULUS AND ARGUMENT 12

Example 3.12

A possible algorithm that finds−z for a given complex number z can be described as follows:
first write z in rectangular form, which essentially means that it finds a, b ∈ R such that
z = a + bi. Then −z = −a− bi. In pseudo-code:

Algorithm 1 for computing the “additive inverse of z ∈ C”.
Input: z ∈ C

1: a← Re(z)
2: b← Im(z)
3: return −a− bi

To find 1/z, we use Equation (3-3). Note that 1/z does not exist if z = 0. Therefore the
algorithm first checks if z = 0.

Algorithm 2 for computing the “multiplicative inverse of z ∈ C”.
Input: z ∈ C

1: if z = 0 then
2: return “0 has no multiplicative inverse!”
3: else
4: c← Re(z),
5: d← Im(z),
6: N ← c2 + d2,
7: return c

N −
d
N i.

3.3 Modulus and argument

We have seen in Section 3.1 that a complex number z can be uniquely determined by
its real part Re(z) and its imaginary part Im(z), since for any z ∈ C it holds that z =
Re(z)+ Im(z)i. We called the pair (Re(z), Im(z)) the rectangular coordinates of z. In this
section we will introduce another way to describe a complex number. Given a complex
number z, we can draw a triangle in the complex plane with vertices in the complex
numbers 0, Re(z) and z (see Figure 3.4). The distance from z to 0 is called the modulus
or absolute value of z and is denoted by |z|. The angle from the positive part of the real
axis to the vector from 0 to z is called the argument of z and is denoted by arg(z).



Note 3 3.3 MODULUS AND ARGUMENT 13

We will always give the argument (and indeed any angle) in radians. Since the angle
2π denotes a full turn, one can always add an integer multiple of 2π to an angle. For
example the angle −π/4 can also be given as 7π/4, since −π/4 + 2π = 7π/4. For
this reason one says that the argument of a complex number is determined only up to a
multiple of 2π. A formula like “arg(z) = 5π/4" should therefore be read as: “5π/4 is
an argument of z". It is always possible to find an argument of a complex number z in
the interval ]− π, π]. This value is sometimes called the principal value of the argument
and denoted by Arg(z).

|z|
Im(z)

0

z

Re(z)

arg(z)

Figure 3.4: Modulus and argument of a complex number z.

From Figure 3.4 we can deduce that

Re(z) = |z| cos(arg(z)) and Im(z) = |z| sin(arg(z)). (3-4)

Therefore, given |z| and arg(z), we can compute z’s rectangular coordinates. This im-
plies that the pair (|z|, arg(z)) completely determines the complex number z, since

z = |z| ( cos(arg(z)) + sin(arg(z))i ) . (3-5)

The pair (|z|, Arg(z)) is called the polar coordinates of a complex number z ∈ C. If a
complex number z is written in the form z = r ( cos(α) + i sin(α) ), with r a positive real
number, it holds that |z| = r and arg(z) = α. Moreover, if α ∈]−π, π], then Arg(z) = α.
Again from Figure 3.4 we can deduce that

|z| =
√

Re(z)2 + Im(z)2 and tan(arg(z)) = Im(z)/Re(z), if Re(z) 6= 0. (3-6)

This equation is the key to compute the polar coordinates of a number from its rectan-
gular coordinates. More precisely, using the inverse tangent function arctan discussed
in Subsection 2.3.2, we have the following:
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Theorem 3.13

If a complex number z different from zero has polar coordinates (r, α), then

Re(z) = r cos(α) and Im(z) = r sin(α).

Conversely, if a complex number z different from zero has rectangular coordinates
(a, b), then:

|z| =
√

a2 + b2 and Arg(z) =



arctan(b/a) if a > 0,

π/2 if a = 0 and b > 0,

arctan(b/a) + π if a < 0 and b ≥ 0,

−π/2 if a = 0 and b < 0,

arctan(b/a)− π if a < 0 and b < 0.

Proof. Given the polar coordinates of z, we can use Equation (3-4) to compute its rect-
angular coordinates. Conversely, given the rectangular coordinates (a, b) of z, we get
from Equation (3-6) that |z| =

√
a2 + b2. If a = 0, the number z lies on the imaginary

axis. In this case we have that Arg(z) = π/2 if b > 0 and Arg(z) = −π/2 if b < 0. If
a 6= 0, it holds according to Equation (3-6) that tan(Arg(z)) = b/a. Therefore it then
holds that Arg(z) = arctan(b/a) + nπ for some integer n ∈ Z. If z lies in the first or
fourth quadrant, then Arg(z) lies in the interval ]− π/2, π/2[. In this case we therefore
get that Arg(z) = arctan(b/a). If z lies in the second quadrant, its argument lies in the
interval ]π/2, π]. Therefore we then find that Arg(z) = arctan(b/a) + π. Similarly, if z
lies in the third quadrant, we find that Arg(z) = arctan(b/a)− π.

The modulus can be seen as a function f : C → R, where f (z) = |z|. It plays a similar
role for the complex numbers as the absolute value function from Example 2.19. In fact,
if z = a + 0i is a real number, it holds that |z| =

√
a2 + 02 if we apply the modulus

function. However,
√

a2 = |a|, where now |a| denotes the absolute value of a real
number. Hence the modulus, when applied to a real number a, gives exactly the same
output as the absolute value applied to a. This explains why it makes sense to use
exactly the notation |a| both for the usual absolute value of a real number and for the
modulus of a complex number. Indeed, |z| is in fact often also called the absolute value
of a complex number. Finally, observe that |z|2 = Re(z)2 + Im(z)2 = z · z, the final
equality following from equation (3-1).
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The formula for the argument of a complex number a + bi depends on in which quad-
rant of the complex plane the number lies (see Figure 3.5).

π
2

−π
2

1st quadrant:

arg(z) = arctan(b/a)

2nd quadrant:

arg(z) = arctan(b/a) + π

3rd quadrant:

arg(z) = arctan(b/a)− π

4th quadrant:

arg(z) = arctan(b/a)

Figure 3.5: Formulas for the argument of z = a + bi.

Example 3.14

Compute the polar coordinates of the following complex numbers:

1. 4i

2. −7

3. 3 + 3i

4. −2− 5i

Answer: We can find the modulus and argument using Theorem 3.13. Figure 3.5 is useful
when computing the argument. Therefore, we first plot the four given complex numbers in
the complex plane.
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−7 −6 −5 −4 −3 −2 −1 1 2 3 4
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3 + 3i

−2− 5i

0

1. |4i| = |0 + 4i| =
√

02 + 42 = 4 and Arg(4i) = π/2. Therefore the polar coordinates
of 4i are (4, π/2).

2. | − 7| =
√
(−7)2 + 02 = 7 and Arg(−7) = arctan(0/(−7)) + π = π. Therefore the

polar coordinates of −7 are (7, π).

3. |3 + 3i| =
√

32 + 32 = 3
√

2 and Arg(3 + 3i) = arctan(3/3) = π/4. Therefore the
polar coordinates of 3 + 3i are (3

√
2, π/4).

4. | − 2− 5i| =
√
(−2)2 + (−5)2 =

√
29

and

Arg(−2− 5i) = arctan((−5)/(−2))− π = arctan(5/2)− π. Therefore the polar coor-
dinates of −2− 5i are (

√
29, arctan(5/2)− π).

Example 3.15

The following polar coordinates are given. Compute the corresponding complex numbers
and write those numbers in rectangular form.

1. (2, π/3)
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2. (10, π)

3. (4,−π/4)

4. (2
√

3,−2π/3)

5. (3, 2)

Answer: We use Equation (3-5) to compute the complex numbers z corresponding to the
given polar coordinates. Afterwards we express these complex numbers in rectangular form.

1. z = 2 · (cos(π/3) + sin(π/3)i) = 2 · (1/2 +
√

3/2i) = 1 +
√

3i.

2. z = 10 · (cos(π) + sin(π)i) = −10 + 0i = −10.

3. z = 4 · (cos(−π/4) + sin(−π/4)i) = 4 · (
√

2/2−
√

2/2i) = 2
√

2− 2
√

2i.

4. z = 2
√

3 · (cos(−2π/3) + sin(−2π/3)i) = 2
√

3 · (−1/2−
√

3/2i) = −
√

3− 3i.

5. z = 3 · (cos(2) + sin(2)i) = 3 cos(2) + 3 sin(2)i.

3.4 The complex exponential function

We have seen that many computations one can do with real numbers, like addition,
subtraction, multiplication and division, also can be done with complex numbers. We
will see in this section that also the exponential function exp : R→ R>0, where exp(t) =
et can be defined for complex numbers as well. The resulting function is called the
complex exponential function.

Definition 3.16

Let z ∈ C be a complex number whose rectangular form is given by z = a + bi for
certain a, b ∈ R. Then we define

ez = ea · (cos(b) + sin(b)i).

The complex exponential function is usually again denoted by exp. This time the do-
main of the function is C though. More precisely, the complex exponential function
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is the function exp : C → C. Note that if z is a real number, say z = a + 0i, then
ez = ea · (cos(0) + sin(0)i) = ea. So the complex exponential function, when evaluated
in a real number, gives exactly the same as the usual exponential function would have
given. This is the reason why it makes sense to denote both the exponential function
exp : R → R>0 and the complex exponential function exp : C → C with the same
symbol exp.

Example 3.17

Write the following expressions in rectangular form:

1. e2

2. e1+i

3. eπi

4. eln(2)+iπ/4 (whenever we write ln, we mean the logarithm with base e)

5. e2πi

Answer: We use Definition 3.16 and simplify till we find the desired rectangular form.

1. Since e2 is a real number, it is already in rectangular form. If we use Definition 3.16
anyway, we find e2 = e2+0i = e2 · (cos(0) + sin(0)i) = e2 · (1 + 0i) = e2, which again
shows that e2 already was in rectangular form. It is also fine to write e2 = e2 + 0i and
then to return e2 + 0i as answer.

2. e1+i = e1 · (cos(1) + sin(1)i) = e cos(1) + e sin(1)i.

3. eπi = e0+πi = e0 · (cos(π) + sin(π)i) = 1 · (−1 + 0i) = −1.

4. eln(2)+iπ/4 = eln(2) · (cos(π/4) + sin(π/4)i) = 2(
√

2/2 +
√

2/2i) =
√

2 +
√

2i.

5. e2πi = cos(2π) + sin(2π)i = 1 + 0i = 1. Note that also e0 = 1. This shows that the
complex exponential function is not injective.

Directly from Definition 3.16, we see that for any z ∈ C:

Re(ez) = eRe(z) cos(Im(z)) and Im(ez) = eRe(z) sin(Im(z)).

The complex exponential function has many properties in common with the usual real
exponential function. To show those, we will use the following lemma.
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Lemma 3.18

Let α1, α2 ∈ R. We have

(cos(α1) + sin(α1)i) · (cos(α2) + sin(α2)i) = cos(α1 + α2) + sin(α1 + α2)i.

Proof. By multiplying out the parentheses, we can compute the real and imaginary part
of the product (cos(α1) + sin(α1)i) · (cos(α2) + sin(α2)i). It turns out that the real part
is given by cos(α1) cos(α2)− sin(α1) sin(α2) and the imaginary part by cos(α1) sin(α2)+
sin(α1) cos(α2). Using the additions formulas for the cosine and sine functions the lemma
follows.

Theorem 3.19

Let z, z1 and z2 be complex numbers and n an integer. Then it holds that

ez 6= 0

1/ez = e−z

ez1ez2 = ez1+z2

ez1/ez2 = ez1−z2

(ez)n = enz

Proof. We will show the third item: ez1ez2 = ez1+z2 . First we write z1 and z2 in rectangu-
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lar form: z1 = a1 + b1i and z2 = a2 + b2i. Then we find that

ez1 · ez2 = ea1 · (cos(b1) + sin(b1)i) · ea2 · (cos(b2) + sin(b2)i)

= ea1 · ea2 · (cos(b1) + sin(b1)i) · (cos(b2) + sin(b2)i)

= ea1+a2 · (cos(b1) + sin(b1)i) · (cos(b2) + sin(b2)i)

= ea1+a2 · (cos(b1 + b2) + sin(b1 + b2)i) (using Lemma 3.18)

= ea1+a2+(b1+b2)i = ez1+z2 .

3.5 Euler’s formula

The complex exponential function gives a connection between trigonometry and com-
plex numbers. We will explore this connection in this section.

Let t be a real number. The formula

eit = cos(t) + i sin(t) (3-7)

is known as Euler’s formula and is a consequence of Definition 3.16. It implies that

e−it = cos(−t) + i sin(−t) = cos(t)− i sin(t). (3-8)

Equations (3-7) and (3-8) can be seen as equations in the unknowns cos(t) and sin(t).
Solving for cos(t) and sin(t) gives:

cos(t) =
eit + e−it

2
and sin(t) =

eit − e−it

2i
. (3-9)

Equation (3-9) can be used to rewrite products of cos- and sin-functions to a sum of
cos- and sin-functions (that is to say, as a sum of purely harmonic functions). This kind
of computations are standard in frequency analysis, where one tries to write arbitrary
functions as a sum of purely harmonic functions. It can also be useful to compute inte-
grals of trigonometric expressions as we can see in the following example.
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Example 3.20

Compute
∫

sin(3t) cos(t)dt.

Answer: First we use Euler’s formulas to rewrite the expression sin(3t) cos(t):

sin(3t) cos(t) =
ei3t − e−i3t

2i
· eit + e−it

2
=

(ei3t − e−i3t)(eit + e−it)

4i

=
ei4t + ei2t − e−i2t − e−i4t

4i
=

1
2

(
ei4t − e−i4t

2i
+

ei2t − e−i2t

2i

)

=
sin(4t)

2
+

sin(2t)
2

.

Now we get∫
sin(3t) cos(t)dt =

∫ sin(4t)
2

+
sin(2t)

2
dt = −cos(4t)

8
− cos(2t)

4
+ c, c ∈ R.

In Figure 3.6 the identity sin(3t) cos(t) = sin(4t)
2 + sin(2t)

2 from the previous example is
illustrated.

sin(3t) cos(t)
sin(4t)/2
sin(2t)/2

−π −π/2 π/2 π

−1

−0.5

0.5

1

Figure 3.6: It holds that sin(3t) cos(t) = sin(4t)
2 + sin(2t)

2 .

Another application of Euler’s formula is given in the following theorem.
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Theorem 3.21

Let n ∈N be a natural number. Then the following formulas hold:

cos(nt) = Re((cos(t) + sin(t)i)n)

and
sin(nt) = Im((cos(t) + sin(t)i)n)

Proof. The key is the following equation:

cos(nt) + sin(nt)i = eint = (eit)n = (cos(t) + sin(t)i)n.

The theorem follows by taking real and imaginary parts on both side of this equality.

The expressions in this theorem are known as DeMoivre’s formula. Let us consider some
examples.

Example 3.22

Express cos(2t) and sin(2t) in cos(t) and sin(t).

Answer: According to DeMoivre’s formula for n = 2, we have cos(2t) = Re((cos(t) +
sin(t)i)2) and sin(2t) = Im((cos(t) + sin(t)i)2). Since

(cos(t) + sin(t)i)2 = cos2(t) + 2 cos(t) sin(t)i + sin2(t)i2

= cos2(t) + 2 cos(t) sin(t)i− sin2(t)

= cos2(t)− sin2(t) + 2 cos(t) sin(t)i,

we find that
cos(2t) = cos(t)2 − sin(t)2

and
sin(2t) = 2 cos(t) sin(t).
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Example 3.23

Express cos(3t) and sin(3t) in cos(t) and sin(t).

Answer: According to DeMoivre’s formula for n = 3, we have cos(3t) = Re((cos(t) +
i sin(t))3) and sin(3t) = Im((cos(t) + i sin(t))3). After some computations we find that
(cos(t) + i sin(t))3 = (cos(t)3 − 3 cos(t) sin(t)2) + i(3 cos(t)2 sin(t) − sin(t)3). Apparently
the following holds:

cos(3t) = cos(t)3 − 3 cos(t) sin(t)2

and
sin(3t) = 3 cos(t)2 sin(t)− sin(t)3.

3.6 The polar form of a complex number

Let r be a positive, real number and α a real number. Then from Definition 3.16, we
see that r · eαi = r · (cos(α) + sin(α)i). As we have seen in and after Equation (3-5), the
number r · eαi then has modulus r and an argument equal to α (see Figure 3.7). Also we
can rewrite Equation (3-5) as z = |z|ei arg(z). This way to write a complex number has a
special name:

Definition 3.24

Let z ∈ C \ {0} be a non-zero complex number. Then the righthand side of the
equation

z = |z| · ei arg(z)

is called the polar form of z.

If z 6= 0, we can from the polar coordinates (r, α) of z directly write z in polar form,
namely z = reiα. Conversely, given an expression of the form z = reiα, with r > 0
a positive real number and α ∈] − π, π] a real number, we can read off that the polar
coordinates of z are given by (r, α). See Figure 3.7 for an illustration.
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|z|=r

z=reiα

0
arg(z)=α

Figure 3.7: Polar form of a complex number z.

Example 3.25

Write the following complex numbers in polar form:

1. −1 + i

2. 2 + 5i

3. e7+3i

4. e7+3i/(−1 + i)

Answer: In principle, one can for each of the given numbers calculate its modulus and its
argument. Once these have been calculated, one can write the number in polar form.

1. | − 1 + i| =
√

1 + 1 =
√

2 and arg(−1 + i) = arctan(1/ − 1) + π = 3π/4. In polar
form the number is therefore given by

√
2ei3π/4.

2. |2 + 5i| =
√

4 + 25 =
√

29 and arg(2 + 5i) = arctan(5/2). We therefore find that 2 + 5i
has the following polar form:

√
29ei arctan(5/2).

3. e7+3i = e7e3i. The righthand side of this equation is already the polar form of the
number, since it is of the form reiα (with r > 0 and α ∈ R). We can read off that the
modulus of the number e7+3i equals e7, while its argument equals 3.

4. We have seen in the first part of this example that −1+ i =
√

2ei3π/4. Then we get that:

e7+3i

−1 + i
=

e7e3i
√

2ei3π/4
=

e7
√

2
e3i

ei3π/4 =
e7
√

2
e(3−3π/4)i.

The last expression is the desired polar form. We can read off that the number
e7+3i/(−1 + i) has modulus e7/

√
2 and argument 3− 3π/4.
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In the previous example, we saw that the modulus of the number e7+3i equalled e7,
while its argument was given by 3. In general it holds that

|ez| = eRe(z) and arg(ez) = Im(z). (3-10)

In the last item of Example 3.17, we have seen that the complex exponential function
is not injective, since the equation ez = 1 has several solutions, for example 0 and 2π i.
Using what we have learned so far, let us investigate more generally how to solve this
type of equation:

Lemma 3.26

Let w ∈ C be a complex number. If w = 0, then the equation ez = w has no solutions.
If w 6= 0, then the solutions to equation ez = w are precisely those z ∈ C of the form
z = ln(|w|) + arg(w)i, where arg(w) can be any argument of w.

Proof. Equation (3-10) implies that |ez| cannot be zero, since eRe(z) > 0 for all z ∈ C.
Hence the equation ez = 0 has no solutions. Now assume that w 6= 0. If ez = w, then
Equation (3-10) implies that |w| = |ez| = eRe(z) and therefore that Re(z) = ln(|w|).
Similarly, using the second part of Equation (3-10), ez = w implies that arg(w) = Im(z).
Note though that there are infinitely many possible values for arg(w), since we can
always modify it by adding an integer multiple of 2π to it. So far, we have showed that
if w 6= 0, then any solution of the equation ez = w has to be of the form z = ln(|w|) +
arg(w)i. Conversely, given any z satisfying z = ln(|w|) + arg(w)i, where arg(w) is any
argument of w, then ez = eln(|w|)+arg(w)i = eln(|w|) · ei arg(w) = |w| · ei arg(w) = w, where
the last equality follows since |w|ei arg(w) is simply the polar form of w.

A direct consequence of this lemma is that the image of the complex exponential func-
tion exp : C → C with z 7→ ez, satisfies exp(C) = C \ {0}. Indeed, the equation ez = 0
has no solutions, implying that 0 is not in the image, while for any nonzero complex
number w, the lemma explains how to find complex numbers z that are mapped to w
by the complex exponential function.

We can now revisit polar coordinates and use the properties of the complex exponential
function as given in Theorem 3.19 to prove the following theorem.
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Theorem 3.27

Let z1, z2 ∈ C \ {0} be two complex numbers both different from zero. Then the
following holds:

|z1 · z2| = |z1| · |z2|

and
arg(z1 · z2) = arg(z1) + arg(z2).

We also have
|z1/z2| = |z1|/|z2|

and
arg(z1/z2) = arg(z1)− arg(z2).

Finally, let n ∈ Z be an integer and z ∈ C \ {0} a non-zero complex number. Then

|zn| = |z|n

and
arg(zn) = n arg(z).

Proof. We only show the first two parts of the theorem. Let us write r1 = |z1|, r2 = |z2|,
α1 = arg(z1) and α2 = arg(z2). According to Equation (3-5) we have

z1 · z2 = r1 · eα1i · r2 · eα2i

= r1 · r2 · eα1i · eα2i

= r1 · r2 · eα1i+α2i

= r1 · r2 · e(α1+α2)i

We used the third item of Theorem 3.19 in the third equality. We can now conclude that

|z1 · z2| = r1 · r2 = |z1| · |z2| and arg(z1 · z2) = α1 + α2 = arg(z1) + arg(z2).

Theorem 3.27 gives a geometric way to describe the multiplication of two complex num-
bers: the length of a product is the product of the lengths and the argument of a product
is the sum of the arguments (see Figure 3.8).
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z1

z2

0

z1 · z2

1

i

|z1 · z2| = |z1| · |z2|

arg(z1 · z2) = arg(z1) + arg(z2)

Figure 3.8: Graphic illustration of Theorem 3.27.

The polar form of a complex number can be very useful for the computation of an inte-
ger power of a complex number. Let us look at an example.

Example 3.28

Write the following complex numbers in rectangular form. Hint: use polar forms.

1. (1 + i)13.

2. (−1−
√

3i)15.

Answer:
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1. The number 1+ i has argument π/4 and modulus
√

2. Hence 1+ i =
√

2 · eiπ/4. Hence

(1 + i)13 =
(√

2 · eiπ/4
)13

=
√

2
13
· ei13π/4

=
√

2
13
· (cos(13π/4) + sin(13π/4)i)

=
√

2
13
· (cos(−3π/4) + sin(−3π/4)i)

= 64
√

2 · (cos(−3π/4) + sin(−3π/4)i)

= 64
√

2 ·
(
−
√

2/2− i
√

2/2
)

= −64− 64i.

2. First we calculate modulus and argument −1 −
√

3i. According to Theorem 3.13 it
holds that

arg(−1−
√

3i) = arctan((−
√

3)/(−1))− π = −2π/3

and
| − 1−

√
3i| =

√
(−1)2 + (−

√
3)2 = 2.

Hence −1−
√

3i = 2 · e−i2π/3. Therefore

(−1−
√

3i)15 =
(

2 · e−i2π/3
)15

= 215 · e−i30π/3

= 215 · (cos(−30π/3) + sin(−30π/3)i)

= 215 · (cos(−10π) + sin(−10π)i)

= 215 · (cos(0) + sin(0)i)

= 215 · (1 + 0i)

= 215.
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