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Note 4

Polynomials

4.1 Definition of polynomials

In this chapter we will investigate a certain type of expressions called polynomials.
Polynomials will come up again later, when we discuss differential equations, exam-
ples of vector spaces, and eigenvalues of a matrix, but that is for later. For now, we start
by defining what a polynomial is.

Definition 4.1

A polynomial p(Z) in a variable Z is an expression of the form:

p(Z) = a0Z0 + a1Z1 + a2Z2 + · · ·+ anZn, with n ∈ Z≥0 a non-negative integer.

Here the symbols a0, a1, a2, . . . , an ∈ C denote complex numbers, which are called
the coefficients of p(Z). The expressions a0Z0, a1Z1, . . . , anZn are called the terms of
the polynomial p(Z). The largest i for which ai 6= 0 is called the degree of p(Z) and is
denoted by deg(p(Z)). The corresponding coefficient is called the leading coefficient.
Finally, the set of all polynomials in Z with complex coefficients is denoted by C[Z].

It is common not to write Z0 and to write Z instead of Z1. Then a polynomial is simply
written as p(Z) = a0 + a1Z + a2Z2 + · · · + anZn. A polynomial of degree zero can
then just be interpreted as a nonzero constant a0, while a polynomial of degree one has
the form a0 + a1Z. The polynomial all of whose coefficients are zero is called the zero
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polynomial and denoted by 0. It is customary to define the degree of the zero polynomial
to be −∞, minus infinity.

By definition, the coefficients completely determine a polynomial. In other words: two
polynomials p1(Z) = a0 + a1Z · · ·+ anZn of degree n and p2(Z) = b0 + b1Z · · ·+ bmZm

of degree m are equal if and only if n = m and ai = bi for all i. The order of the terms is
not important. For example, the polynomials Z2 + 2Z + 3, Z2 + 3+ 2Z and 3+ 2Z + Z2

are all the same. The notation C[Z] for the set of all polynomials with coefficients in C is
standard, but the symbol used to indicate the variable, in our case Z, varies from book
to book. We have chosen Z, since we have been using z for complex numbers. Other
sets of polynomials can be obtained by replacing C by something else. For example, we
will frequently use R[Z], which denotes the set of all polynomials with coefficients in
R. Note that R[Z] ⊆ C[Z], since R ⊆ C.

Example 4.2

Indicate which of the following expressions is an element of C[Z]. If the expression is a
polynomial, give its degree and leading coefficient.

1. 1 + Z2

2. Z−1 + 1 + Z3

3. i

4. sin(Z) + Z12

5. 1 + 2Z + 5Z10 + 0Z11

6. 1 + Z + Z2.5

7. (1 + Z)2

Answer:

1. 1 + Z2 is a polynomial in Z. If we want to write it in the form a0 + a1Z + a2Z2 + · · ·+
anZn as in Definition 4.1, we can write it as 1 + 0Z + 1Z2. Hence n = 2, a0 = a2 = 1
and a1 = 0. Because a2 6= 0, the polynomial is of degree 2, while its leading coefficient
is a2, which is equal to 1.

2. Z−1 + 1 + Z3 is not a polynomial in Z because of the term Z−1. The exponents of Z of
the terms in a polynomial may not be negative.
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3. The complex number i can be interpreted as a polynomial in C[Z]. One chooses n = 0
and a0 = i in Definition 4.1. The polynomial i has therefore degree 0 and leading
coefficient i.

4. sin(Z) + Z12 is not a polynomial because of the term sin(Z).

5. 1 + 2Z + 5Z10 + 0Z11 is a polynomial in C[Z]. The term of degree eleven can be left
out though, since the coefficient of Z11 is 0. The highest power of Z with a coefficient
different from zero is therefore 10. This means that deg(1 + 2Z + 5Z10 + 0Z11) = 10,
while its leading coefficient is 5.

6. 1 + Z + Z2.5 is not a polynomial, because of the term Z2.5. The exponents of Z must be
natural numbers.

7. (2+Z)2 is a polynomial in C[Z], though it is not written in the form as in Definition 4.1.
However, it can be rewritten in this form, since (2+ Z)2 = 4+ 4Z+ Z2 = 4+ 4Z+ 1Z2.
We have that deg((2 + Z)2) = 2. The leading coefficient of (1 + Z)2 is 1.

Given a polynomial p(Z) ∈ C[Z], one can evaluate the polynomial in any complex
number z ∈ C. More precisely, if p(Z) = a0 + a1Z + · · · + anZn ∈ C[Z] and z ∈ C,
then we can define p(z) = a0 + a1 · z + · · ·+ an · zn ∈ C. In this way, any polynomial
p(Z) ∈ C[Z] gives rise to a function p : C → C, defined by z 7→ p(z). A function
f : C → C is called a polynomial function, if there exists a polynomial p(Z) ∈ C[Z] such
that for all z ∈ C it holds that f (z) = p(z). Similarly, a function f : R → R is called a
polynomial function, if there exists a polynomial p(Z) ∈ R[Z] such that for all x ∈ R it
holds that f (x) = p(x).

Two polynomials p1(Z) = a0 + a1Z · · · + anZn and p2(Z) = b0 + b1Z · · · + bmZm can
be multiplied by adding all the terms aibjZi+j, where 0 ≤ i ≤ n and 0 ≤ j ≤ m. This
simply means that in order to compute p1(Z) · p2(Z), one simply multiplies each term
in p1(Z) with each term in p2(Z) and then adds up the resulting terms. Let us look at
some examples.

Example 4.3

Write the following polynomials in the form as in Definition 4.1.

1. (Z + 5) · (Z + 6).

2. (3Z + 2) · (3Z− 2).

3. (Z− 1) · (Z2 + Z + 1).
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Answer:

1. (Z + 5) · (Z + 6) = Z · (Z + 6) + 5 · (Z + 6) = Z2 + 6Z + 5Z + 30 = Z2 + 11Z + 30.

2. (3Z + 2) · (3Z− 2) = (3z)2 − 6Z + 6Z− 22 = 9Z2 − 4.

3. In this example, the only difference from the previous two is that there will be more
terms when multiplying, but otherwise there is no difference:

(Z− 1) · (Z2 + Z + 1) = Z · (Z2 + Z + 1)− (Z2 + Z + 1)
= Z3 + Z2 + Z− Z2 − Z− 1
= Z3 − 1.

Note that if a polynomial is a product of two other polynomials, say p(Z) = p1(Z) ·
p2(Z), then deg p(Z) = deg p1(Z) + deg p2(Z). In other words:

p(Z) = p1(Z) · p2(Z) ⇒ deg p(Z) = deg p1(Z) + deg p2(Z). (4-1)

If p(Z) ∈ C[Z] is a polynomial, then the equation p(z) = 0 is called a polynomial equation.
Solutions to a polynomial equation have a special name:

Definition 4.4

Let p(Z) ∈ C[Z] be a polynomial. A complex number λ ∈ C is called a root of p(Z)
precisely if p(λ) = 0.

Note that by definition, a complex number is a root of a polynomial p(Z) if and only if
it is a solution to the polynomial equation p(z) = 0.

4.2 Polynomials in R[Z] of degree two

To see why complex numbers were introduced in the first place, we will explain in this
section how to find the roots of a polynomial p(Z) ∈ R[Z] of degree two. Note that we
are assuming that p(Z) ∈ R[Z] so that the polynomial p(Z) has real coefficients. Such a
polynomial p(Z) can therefore be written in the form

p(Z) = aZ2 + bZ + c,
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where a, b, c ∈ R and a 6= 0. To find its roots, we need to solve the polynomial equation
az2 + bz + c = 0. Now the following holds:

az2 + bz + c = 0⇔ 4a2z2 + 4abz + 4ac = 0

⇔ (2az)2 + 2(2az)b + b2 = b2 − 4ac

⇔ (2az + b)2 = b2 − 4ac.

(4-2)

The expression b2 − 4ac is called the discriminant of the polynomial aZ2 + bZ + c. We
will denote it by D. From Equation (4-2) it follows that in order to compute the roots of
the polynomial aZ2 + bZ + c, we need to take the square root of its discriminant D. If
D ≥ 0, one can use the usual square root, but now we will define the square root of any
real number:

Definition 4.5

Let D be a real number. Then we define

√
D =

{ √
D if D ≥ 0,

i
√
|D| if D < 0.

If D ≥ 0, then
√

D is exactly what we are used to and it holds that
√

D
2
= D. If D < 0, it

holds that
√

D
2
= (i

√
|D|)2 = i2

√
|D|2 = (−1)|D| = D. Therefore, for all real numbers

D it holds that
√

D
2
= D. This is exactly the property that we would like the square

root symbol to have. Moreover, all solutions to the equation z2 = D can now be given:
they are z =

√
D and z = −

√
D. Later, in Theorem 4.13, we will even be able to describe

all the solutions to equations of the form zn = w for any n ∈ N and w ∈ C. We now
return to the computation of the roots of the polynomial p(z) = az2 + bz + c. Using the
extended square root and Equation (4-2) we find that

az2 + bz + c = 0⇔ (2az + b)2 = b2 − 4ac

⇔ (2az + b) =
√

b2 − 4ac ∨ (2az + b) = −
√

b2 − 4ac

⇔ z =
−b +

√
b2 − 4ac

2a
∨ z =

−b−
√

b2 − 4ac
2a

.

(4-3)

We get the usual formula to solve an equation of degree two, but the square root of the
discriminant is now also defined if the discriminant is negative. In fact we now have
shown the following theorem.
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Theorem 4.6

The polynomial p(Z) = aZ2 + bZ + c ∈ R[Z] with a 6= 0, has precisely the following
roots in C:

−b +
√

D
2a

and
−b−

√
D

2a
, where D = b2 − 4ac.

To be more precise, the polynomial has

1. two real roots z =
−b±

√
D

2a
if D > 0,

2. one real root z =
−b
2a

if D = 0,

3. two non-real roots z =
−b± i

√
|D|

2a
if D < 0.

The description of the roots in Theorem 4.6 is very algorithmic in nature. In fact, let us
write some pseudo-code for an algorithm:

Algorithm 1 for computing the roots of p(Z) ∈ R[Z] of degree two.
Input: p(Z) ∈ R[Z], with deg(p(Z)) = 2

1: a← coefficient of Z2 in p(Z)
2: b← coefficient of Z1 in p(Z)
3: c← coefficient of Z0 in p(Z)
4: D ← b2 − 4ac
5: if D ≥ 0 then

6: return
−b +

√
D

2a
and
−b−

√
D

2a
7: else

8: return
−b + i

√
|D|

2a
and
−b− i

√
|D|

2a

In Figure 4.1, we have drawn the graphs of some second degree polynomials. Real
roots of a second degree polynomial correspond to intersection points of the x-axis and
its graph. If there are no intersection points, the polynomial does not have real roots,
but complex roots. If D = b2 − 4ac = 0, the polynomial equation az2 + bz + c = 0 has
one solution and we say in this case that the polynomial has a double root, or a root of
multiplicity two. If D 6= 0, one says that the roots have multiplicity one. We see that any
polynomial of degree two has two roots if the roots are counted with their multiplicities.
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We will return to roots and multiplicities in more detail in Section 4.6. If we consider
the graph of a polynomial function f : R → R coming from a degree two polynomial
in R[Z], then this graph intersects the horizontal axis twice if D > 0, once if D = 0 and
not at all if D < 0. See Figure 4.1 for an illustration.

z

p(z) D<0
D=0
D>0

Figure 4.1: A degree two polynomial p(Z) ∈ R[Z] has two real roots if D > 0, a double
root if D = 0, and two complex, two non-real roots if D < 0.

Example 4.7

Compute all complex roots of the polynomial 2Z2 − 4Z + 10 = 0.

Answer: The discriminant of the polynomial 2Z2 − 4Z + 10 equals

D = (−4)2 − 4 · 2 · 10 = −64.

According to Definition 4.5 we then find that
√

D =
√
−64 = i

√
64 = 8i.

Therefore the polynomial equation 2z2 − 4z + 10 = 0 has two non-real roots, namely

z =
−(−4) + 8i

2 · 2 = 1 + 2i ∨ z =
−(−4)− 8i

2 · 2 = 1− 2i.

Although Theorem 4.6 guarantees that 1+ 2i and 1− 2i are the roots of the polynomial 2Z2−
4Z + 10, let us check that 1 + 2i is a root by hand:

2 · (1 + 2i)2 − 4 · (1 + 2i) + 10 = 2 · (12 + 4i + (2i)2)− 4 · (1 + 2i) + 10

= 2 · (1− 4 + 4i)− 4 · (1 + 2i) + 10

= 2 · (−3 + 4i)− 4 · (1 + 2i) + 10

= (−6 + 8i)− (4 + 8i) + 10

= 0.

Hence indeed, just as the theory predicts, 1 + 2i is a root of 2Z2 − 4Z + 10.
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4.3 Polynomials with real coefficients

In the previous section, we studied degree two polynomials with real coefficients. Many
of the polynomials we will encounter later on will have real coefficients. In this section
we will therefore collect some facts about such polynomials. Complex conjugation as
introduced in Definition 3.8, will play an important role. Complex conjugation has
several nice properties. We list some of these in the following lemma.

Lemma 4.8

Let z, z1, z2 ∈ C be complex numbers. Then it holds that

1. z = z,

2. z1 + z2 = z1 + z2,

3. z1 · z2 = z1 · z2,

4. 1/z = 1/z provided z 6= 0,

5. zn = (z)n, where n ∈ Z.

Proof. We will prove the second and third item of the lemma. Proving the remaining
items is left to the reader. For a sum of two complex numbers z1 = a+ bi and z2 = c+ di
on rectangular form it holds that

z1 + z2 = (a + c) + (b + d)i = (a + c)− (b + d)i = (a− bi) + (c− di) = z1 + z2.

For a product of two complex numbers z1 = a + bi and z2 = c + di on rectangular form
we have z1 · z2 = (ac− bd) + (ad + bc)i. Therefore

z1 · z2 = (ac− bd)− (ad + bc)i.

On the other hand,

z1 · z2 = (a− bi) · (c− di)
= ac− adi− bci + (−b) · (−d)i2

= ac− (ad + bc)i + bd · (−1)
= ac− bd− (ad + bc)i.

This shows that z1 · z2 = z1 · z2.
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Example 4.9

Express the following complex numbers on rectangular form.

1. −3 + 6i

2. π

3. −97i

Answer:

1. From the definition of the complex conjugate we find −3 + 6i = −3− 6i.

2. π = π + 0i = π − 0i = π. This illustrates the more general fact that z = z, if z is a real
number.

3. −97i = −(−97i) = 97i. It turns out that more generally z = −z for all purely imagi-
nary numbers.

Complex conjugation also interacts well with the complex exponential function.

Lemma 4.10

Let z ∈ C be a complex number and α ∈ R a real number. It holds that

1. ez = ez,

2. eiα = e−iα,

3. z = |z|e−i arg(z).

Proof. We prove the first two parts of the lemma. The third part of the lemma is illus-
trated in Figure 4.2. Suppose that z = a + bi is the rectangular form of z. From the
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definition of the complex exponential function we find that

ez = ea cos(b) + ea sin(b)i = ea cos(b)− ea sin(b)i

= ea cos(−b) + ea sin(−b)i = ea−bi = ez.

If z = iα (with α ∈ R) we get the special case

eiα = eiα = e−iα.

|z|

z=|z|ei arg(z)

0
arg(z)

|z|=|z|

z=|z|e−i arg(z)

arg(z)=− arg(z)

Figure 4.2: Polar form of a complex number z and its complex conjugate z.

Example 4.11

Write the complex number 5eiπ/3 in polar form.

Answer:

5eiπ/3 = 5 eiπ/3 = 5e−iπ/3. This illustrates the third part of the previous lemma, which
says that z = |z|e−iarg(z).
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Now let us return to our discussion of polynomials with real coefficients. The reason
we have introduced complex conjugation is the following property:

Lemma 4.12

Let p(Z) ∈ R[Z] be a polynomial with real coefficients and let λ ∈ C be a root of
p(Z). Then the complex number λ ∈ C is also a root of p(Z).

Proof. Let us write p(Z) = anZn + · · · + a1Z + a0. Since p(Z) has real coefficients, it
holds that an, . . . , a0 ∈ R. It is given that λ ∈ C is a root of p(Z) and therefore it holds
that

0 = anλn + · · ·+ a1λ + a0.

We will now show that λ is a root of p(Z) as well, by taking the complex conjugate in
this equation. We find that

0 = anλn + · · ·+ a1λ + a0.

Using this and the properties given in Lemma 4.8, we get:

0 = anλn + an−1λn−1 · · ·+ a1λ + a0

= anλn + an−1λn−1 + · · ·+ a1λ + a0

= anλn + an−1λn−1 + · · ·+ a1 λ + a0

= an(λ)
n + an−1(λ)

n−1 + · · ·+ a1 λ + a0

= an(λ)
n + an−1(λ)

n−1 + · · ·+ a1 λ + a0

= p(λ)

In the fifth equality we have used that the coefficients of the polynomial p(Z) are real
numbers, so that aj = aj for all j between 0 and n. We have now shown that p(λ) = 0
and hence can conclude that λ is a root of the polynomial p(Z) as well.

Lemma 4.12 has the following consequence: non-real roots of a polynomial with real
coefficients come in pairs. Take for example the polynomial 2Z2 − 4Z + 10. We have
seen in Example 4.7 that one of its roots is 1 + 2i. Lemma 4.12 implies that the complex
number 1− 2i then is a root of 2Z2− 4Z + 10 as well. We have seen in Example 4.7 that
this indeed is the case.
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4.4 Binomials

In this section we look at polynomials of the form Zn − w for some natural number
n ∈ N and a complex number w ∈ C different from 0. The number n is the degree of
the polynomial Zn − w. Because a polynomial of the form Zn − w only has two terms,
namely Zn and −w, it is often called a binomial. The corresponding equation zn = w is
called a binomial equation. We will give an exact expression for all roots of a binomial
Zn − w ∈ C[Z]. This means that we have to compute all z ∈ C satisfying the equation
zn = w. It turns out that the polar form of the complex number w is of great help.

Theorem 4.13

Let w ∈ C\{0}. The equation zn = w has exactly n different solutions, namely:

z = n
√
|w|ei( arg(w)

n +p 2π
n ), p ∈ {0, . . . , n− 1}.

Here n
√
|w| denotes the unique positive real number satisfying

(
n
√
|w|
)n

= |w|.

Proof. The main idea of this proof is to try to find all solutions z to the equation zn = w
in polar form. Therefore we write z = |z|eiu and we will try to determine the possible
values of |z| and u such that zn = |w|eiα. In the first place we have zn = (|z|eiu)n =
|z|neinu and this expression should be equal to |w|eiα. This holds if and only if |w| = |z|n
and einu = eiα, or in other words, if and only if |w| = |z|n and ei(nu−α) = 1. The equation
|w| = |z|n has exactly one solution for |z| ∈ R>0, namely |z| = n

√
|w|, while according

to Lemma 3.26, the equation ei(nu−α) = 1 is satisfied if and only if nu − α = arg(1).
The possible arguments of 1 are precisely the integral multiples of 2π, that is to say,
arg(1) = p2π for some integer p ∈ Z.

All solutions to zn = w are therefore of the form z = n
√
|w|ei( α

n+p 2π
n ), where p ∈ Z. In

principle, we find a solution for any choice of p ∈ Z, but when p runs through the set
{0, . . . , n− 1} we already get all different possibilities for z.

When drawn in the complex plane, the solutions to the equation zn = w form the ver-
tices of a regular n-gon with center in 0. Let us illustrate this in an example.
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Example 4.14

In this example we will find all roots of the polynomial Z4 + 8 − i8
√

3 and write them in
rectangular form.

Answer: We can use Theorem 4.13, with n = 4 and w = −(8− i8
√

3). First, we need to write
the complex number −(8− i8

√
3 = −8 + i8

√
3) in polar form. We have

| − 8 + i8
√

3| =
√
(−8)2 + (8

√
3)2 = 16

and
arg(−8 + i8

√
3) = arctan(8

√
3/(−8)) + π = 2π/3.

Therefore we find that −8 + i8
√

3 = 16ei2π/3, which is the desired polar form. According to
Theorem 4.13 all solutions to z4 = −8 + i8

√
3 are given by:

z =
4
√

16ei( 2π
3·4+p 2π

4 ), where p can be chosen freely from the set {0, 1, 2, 3}, so

z = 2ei π
6 ∨ z = 2ei 2π

3 ∨ z = 2ei 7π
6 ∨ z = 2ei 5π

3 .

Now we still need to write these roots in rectangular form. Using the formula eit = cos(t) +
i sin(t) we get:

z =
√

3 + i ∨ z = −1 + i
√

3 ∨ z = −
√

3− i ∨ z = 1− i
√

3.

As remarked after Theorem 4.13, these solutions form the vertices of a regular 4-gon (that is
to say, a square) with center in zero. This is indeed the case as shown in the following figure.

−
√

3i

−i

√
3i

i

−
√

3 −1
√

310
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4.4.1 Polynomials in C[Z] of degree two

In Section 4.2, we have seen how to find the roots of a degree two polynomials in R[Z].
Now that we know how to find the roots of binomial polynomials, we can find the
roots of a degree two polynomials in C[Z] without much additional effort. The main
observation is that for any polynomial aZ2 + bZ + c ∈ C[Z] such that a 6= 0, Equation
(4-3) is still valid. Hence az2 + bz + c = 0 ⇔ (2az + b)2 = b2 − 4ac. We know from
Theorem 4.13 that the equation t2 = b2− 4ac has exactly two solutions, say s and seiπ =
−s. Then az2 + bz + c = 0⇔ 2az + b = s ∨ 2az + b = −s. Solving for z, we then obtain
the following result:

Theorem 4.15

Let p(Z) = aZ2 + bZ + c ∈ C[Z] be a polynomial of degree two. Further, let s ∈ C

be a solution to the binomial equation s2 = b2 − 4ac. Then p(Z) has precisely the
following roots:

−b + s
2a

and
−b− s

2a
.

Example 4.16

As an example, let us find the roots of the polynomial Z2 + 2Z + 1− i.

Answer: The discriminant of the polynomial Z2 + 2Z + 1− i is equal to 22 − 4 · 1 · (1− i) =
4i. Therefore, we first need to solve the binomial equation s2 = 4i. We have |4i| = 4 and
Arg(4i) = π/2. Using Theorem 4.13, we see that the equation s2 = 4i has solutions

2 · eπ/4 i = 2 · (cos(π/4) + i sin(π/4)) = 2 · (
√

2
2

+

√
2

2
i) =

√
2 +
√

2 i

and

2 · e(π/4+π) i = 2 · (cos(5π/4) + i sin(5π/4)) = 2 · (−
√

2
2
−
√

2
2

i) = −
√

2−
√

2 i.

Hence using Theorem 4.15, we obtain that the roots of the polynomial Z2 + Z + 1 − i are
given by

−2 +
√

2 + i
√

2
2

= −1 +

√
2

2
+

√
2

2
i and

−2−
√

2− i
√

2
2

= −1−
√

2
2
−
√

2
2

i.
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4.5 The division algorithm

In the previous section, we have seen how to find the roots of some specific polynomi-
als. To study the behaviour of roots for more general polynomials, we begin with the
following observation:

Lemma 4.17

Let p(Z) ∈ C[Z] be a polynomial and suppose that p(Z) = p1(Z) · p2(Z) for certain
polynomials p1(Z), p2(Z) ∈ C[Z]. Further, let λ ∈ C. Then λ is a root of p(Z) if and
only if λ is a root of p1(Z) or of p2(Z).

Before proving this lemma, let us relate the statement of the lemma to propositional
logic from Note 1 to clarify what really is stated. A statement like

“λ is a root of p(Z) if and only if λ is a root of p1(Z) or of p2(Z)”

in a mathematical text, is just a way to express a statement from propositional logic into
more common language. Reformulating everything in propositional logic, we simply
get the statement

λ is a root of p(Z) ⇔ λ is a root of p1(Z) ∨ λ is a root of p2(Z).

We can even go further and remove all words:

p(λ) = 0 ⇔ p1(λ) = 0 ∨ p2(λ) = 0.

It is a good habit to make sure that you understand what a mathematical statement,
when formulated in common language, really means. Here it is for example perfectly
possible that λ is a root of both p1(Z) and p2(Z), even though in language “or” often
is used in the meaning of “either one or the other, but not both”. In mathematical texts,
“or” typically has the same meaning as “∨”. With this in mind, let us continue to the
proof of the lemma:

Proof. The number λ is a root of p(Z) if and only if p(λ) = 0. Since p(Z) = p1(Z)p2(Z)
this is equivalent to saying that p1(λ)p2(λ) = 0 and therefore with the statement that
p1(λ) = 0 ∨ p2(λ) = 0. This statement is logically equivalent to saying that λ is a root
of p1(Z) or of p2(Z).
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If one wants to find all roots of a polynomial, the above lemma suggests that it is always
a good idea to try to write the polynomial as a product of polynomials of lower degree.
If p(Z) = p1(Z) · p2(Z) as in the previous lemma, one says that p1(Z) and p2(Z) are
factors of the polynomial p(Z). It is therefore useful to have an algorithm that allows
one to decide whether or not a given polynomial p1(Z) ∈ C[Z] is a factor of a given
second polynomial p(Z) ∈ C[Z]. Equation (4-1) is already of some help, since it implies
that p(Z) = p1(Z) · p2(Z) can only be true if deg p(Z) = deg p1(Z) + deg p2(Z). In
particular, p1(Z) cannot be a factor of p(Z) if deg p1(Z) > deg p(Z). However, this still
leaves the case deg p1(Z) ≤ deg p(Z) open. Before giving the algorithm that solves the
problem completely, let us first consider a few examples.

Example 4.18

1. Decide if the polynomial Z + 3 is a factor of the polynomial 2Z2 + 3Z− 9.

2. Decide if the polynomial Z + 4 is a factor of the polynomial 3Z3 + 2Z + 1.

3. Decide if the polynomial 2Z2 + Z + 3 is a factor of the polynomial 6Z4 + 3Z3 + 19Z2 +

5Z + 15.

Answer:

1. We will try to find a polynomial q(Z) ∈ C[Z] such that (Z + 3) · q(Z) = 2Z2 + 3Z− 9.
If q(Z) exists, it should have degree 1 using Equation (4-1). Hence if q(Z) exists, it
should be of the form q(Z) = b1Z + b0 for certain numbers b1, b0 ∈ C. We first try to
find b1. Without simplifying the product (Z + 3) · (b1Z + b0) we can already see that
the highest power of Z in the product is 2 and that the coefficient of Z2 in the product
is b1. This means that (Z + 3) · (b1Z + b0) = b1Z2 + terms of degree less than 2. On
the other hand we want that (Z + 3) · (b1Z + b0) = 2Z2 + 3Z − 9. We see that b1 has
to be 2. Now that we know that b1 = 2, we will determine b0. On the one hand we
want that (Z + 3) · (2Z + b0) = 2Z2 + 3Z − 9, but on the other hand we can write
(Z + 3) · (2Z + b0) = (Z + 3) · 2Z + (Z + 3) · b0. Therefore, we can conclude that

(Z + 3) · b0 = 2Z2 + 3Z− 9− (Z + 3) · 2Z = −3Z− 9. (4-4)

The important observation here is that previously we have chosen b1 in such a way that
the Z2 term in Equation (4-4) is gone. By looking at the coefficients of Z, we conclude
that b0 = −3. We have shown the implication (Z + 3) · q(Z) = 2Z2 + 3Z− 9⇒ q(Z) =
2Z− 3. A direct check verifies that indeed 2Z2 + 3Z− 9 = (Z + 3) · (2Z− 3). We can
conclude that indeed Z + 3 is a factor of 2Z2 + 3Z − 9. Since −3 is the root of Z + 3,
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Lemma 4.17 then implies that−3 is also a root of the polynomial 2Z2 + 3Z− 9. Indeed,
we have 2 · (−3)2 + 3 · (−3)− 9 = 0.

There is a more convenient way to write down the calculations we just carried out. The
first step was to calculate b1 and to subtract b1 · (Z + 3) from 2Z2 + 3Z− 9:

Z + 3 2Z2 + 3Z− 9 2Z
2Z2 + 6Z
− 3Z− 9

The first line contains the polynomials we start with Z + 3 and 2Z2 + 3Z − 9 as well
as all terms of q(Z) we have calculated in the first step. The second line consists of the
multiple of Z + 3 which we subtracted from 2Z2 + 3Z− 9 in Equation (4-4). The third
line gives, after some simplifications, the expression 2Z2 + 3Z − 9− 2Z · (Z + 3). We
also got this in the righthand side of Equation (4-4). The next step was to determine the
b0. We again get that b0 = −3 and update the above scheme as follows:

Z + 3 2Z2 + 3Z− 9 2Z− 3
2Z2 + 6Z
− 3Z− 9
− 3Z− 9

0

This just means that 2Z2 + 3Z− 9− (Z + 3) · (2Z− 3) = 0. This zero on the righthand
side comes from the last line in the above scheme. The conclusion is therefore that
Z + 3 is a factor of the polynomial 2Z2 + 3Z− 9. More than that we can even write the
factorization down, since we showed that 2Z2 + 3Z− 9 = (Z + 3) · (2Z− 3).

2. This time, let us investigate if the polynomial Z + 4 is a factor of the polynomial 3Z3 +

2Z + 1. We try to find a polynomial q(Z) such that (Z + 4) · q(Z) = 3Z3 + 2Z + 1. We
see that q(Z) should have degree 2, that is to say q(Z) = b2Z2 + b1Z + b0, and we want
to determine its three coefficients. By looking at the highest power of Z we see that
b2 = 3. This time we directly use the schematic procedure we described in the first part
of this example. First we get:

Z + 4 3Z3 + 2Z + 1 3Z2

3Z3 + 12Z2

− 12Z2 + 2Z + 1

Now we can see that the coefficient of Z in q(Z) should be −12 and we find:

Z + 4 3Z3 + 2Z + 1 3Z2 − 12Z

3Z3 + 12Z2

− 12Z2 + 2Z + 1

− 12Z2− 48Z

50Z + 1
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We can now read of that the constant term b0 of q(Z) should be 50 and we get:

Z + 4 3Z3 + 2Z + 1 3Z2 − 12Z + 50

3Z3 + 12Z2

− 12Z2 + 2Z + 1

− 12Z2− 48Z

50Z + 1

50Z + 200

− 199

This time we do not get a zero in the last line. What the above scheme actually shows is
that 3Z3 + 2Z + 1− (Z + 4) · (3Z2 − 12Z + 50) = −199. This means that Z + 4 cannot
be a factor of 3Z3 + 2Z + 1, since then Z + 4 would also be a factor of 3Z3 + 2Z + 1−
(Z + 4) · (3Z2 − 12Z + 50) = −199. This would be impossible, since deg(Z + 4) =

1 > 0 = deg(−199). Note that −4 is not a root of the polynomial 3Z3 + 2Z + 1, since
3 · (−4)3 + 2 · (−4) + 1 = −199.

3. We state the schematic procedure only this time:

2Z2 + Z + 3 6Z4 + 3Z3 + 19Z2 + 5Z + 15 3Z2 + 5

6Z4 + 3Z3 + 9Z2

10Z2 + 5Z + 15

10Z2 + 5Z + 15

0

The conclusion is that 6Z4 + 3Z3 + 19Z2 + 5Z + 15 − (2Z2 + Z + 3) · (3Z2 + 5) = 0
and therefore that 6Z4 + 3Z3 + 19Z2 + 5Z + 15 = (2Z2 + Z + 3) · (3Z2 + 5). Hence
2Z2 + Z + 3 is a factor of the polynomial 6Z4 + 3Z3 + 19Z2 + 5Z + 15.

The algorithm described in the above examples is called polynomial division or the divi-
sion algorithm or sometimes also long division. Let us describe it in full generality.

Given as input are two polynomials p(Z), d(Z) ∈ C[Z], where d(Z) is not the zero
polynomial. What we want, is to compute two polynomials q(Z) and r(Z) in C[Z] such
that:

1. p(Z) = d(Z)q(Z) + r(Z).

2. r(Z) = 0 ∨ deg(r(z)) < deg(d(z)).

The produced polynomial q(Z) is called the quotient of p(Z) modulo d(Z), while the
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polynomial r(Z) is called the remainder of p(Z) modulo d(Z). The polynomial d(Z) is a
factor of p(Z) if and only if this remainder is the zero polynomial. Hence the division
algorithm can also be used to determine if any given polynomial divides p(Z).

To find the quotient and remainder, we start the following schematic procedure:

d(Z) p(Z) 0

If we are lucky, we have deg p(Z) < deg d(Z). In this case, we can already stop the
division algorithm and return the values q(Z) = 0 and r(Z) = p(Z). Otherwise, we
would start the long division and find a simple multiple of d(Z) that has the same
degree and leading coefficient as p(Z). Now let us denote the degree of d(Z) by m, the
leading coefficient of d(Z) by dm, and the leading coefficient of p(Z) by b. Then the
polynomial bd−1

m Zdeg p(Z)−m · d(Z) has exactly the same degree and leading coefficient
as p(Z). Hence we update the schematic procedure as follows:

d(Z) p(Z) bdm
−1Zdeg p(Z)−m

bdm
−1Zdeg p(Z)−m · d(Z)

p(Z)− bdm
−1Zdeg p(Z)−m · d(Z)

Note that the degree of the polynomial p(Z) − bdm
−1Zdeg p(Z)−m · d(Z) is strictly less

than deg p(Z), since the leading coefficients of p(Z) and bdm
−1Zdeg p(Z)−m · d(Z) are

the same and therefore cancel each other when the difference of the two polynomials is
taken. If it so happens that the degree of the resulting polynomial p(Z)− bdm

−1Zdeg p(Z)−m ·
d(Z) is strictly less than that of d(Z), we are done and can return as answer the poly-
nomials p(Z)− bdm

−1Zdeg p(Z)−m · d(Z) for r(Z) and bdm
−1Zdeg p(Z)−m · d(Z) for q(Z),

otherwise we continue to the next line.

Now suppose that we have carried out the procedure a couple of times and have arrived
at the following:

d(Z) p(Z) q∗(Z)
. . .

r∗(Z)

If deg r∗(Z) < deg d(Z), then we are already done and can return q∗(Z) and r∗(Z) as the
quotient and remainder we are looking for. Otherwise, we perform one more step in the
long division and find a simple multiple of d(Z) that has the same degree and leading
coefficient as r∗(Z). Very similarly as in the first step of the long division, now denoting
by b the leading coefficient of r∗(Z), we find that the polynomial bd−1

m Zdeg r∗(Z)−m · d(Z)
has exactly the same degree and leading coefficient as r∗(Z). Hence we update the
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schematic procedure as follows:

d(Z) p(Z) q∗(Z) + bdm
−1Zdeg r∗(Z)−m

. . .
r∗(Z)
bdm

−1Zdeg r∗(Z)−m · d(Z)
r∗(Z)− bdm

−1Zdeg r∗(Z)−m · d(Z)

Since at each step of the iteration, the degree of the polynomial at the bottom of the
scheme decreases, we will after finitely many steps arrive at the situation:

d(Z) p(Z) q(Z)
. . .

. . .
r(Z)

Here r(Z) is either the zero polynomial or deg r(Z) < deg d(Z). The quotient and re-
mainder are then the polynomials q(Z) and r(Z) found in the scheme. Let us for good
measure also formulate this algorithm in pseudo-code. To indicate that the algorithm
should keep running as long as deg r∗(Z) ≥ deg d(Z), we use what is known as a while
loop in the pseudo-code.

Algorithm 2 for performing long division in C[Z]
Input: p(Z) ∈ C[Z], d(Z) ∈ C[Z] \ {0}.

1: m← deg d(Z)
2: dm ← leading coefficient of d(Z)
3: q∗(Z)← 0 and r∗(Z)← p(Z)
4: while deg r∗(Z) ≥ m do
5: b← leading coefficient of r∗(Z)
6: q∗(Z)← q∗(Z) + bd−1

m Zdeg r(Z)−m

7: r∗(Z)← r∗(Z)− bd−1
m Zdeg r∗(Z)−m · d(Z)

8: return q∗(Z), r∗(Z)

4.6 Roots, multiplicities and factorizations

A surprising and beautiful theorem is that any polynomial p(Z) ∈ C[Z] of degree at
least 1 has a root in C. This result is often called the fundamental theorem of algebra. For
future reference, let us state the theorem.
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Theorem 4.19 Fundamental theorem of algebra

Let p(Z) ∈ C[Z] be a polynomial of degree at least one. Then p(Z) has a root λ ∈ C.

We will not prove this theorem, since the proof is quite involved. We have seen that
the theorem is true for degree two polynomials in Theorem 4.15. Note that not every
polynomial needs to have a real root. For example, the polynomial Z2 + 1 does not have
a real root, but has a pair of (non-real) complex roots, namely i and −i.

Given a polynomial, it can be difficult or downright impossible to find a useful exact
expression for its roots, but often a numerical approximation of the roots is sufficient.
One can make a precise statement on the number of roots a polynomial can have though.
We will see that if a polynomial has degree n, then it has n roots if we count the roots
in a particular way. Now that we have the division algorithm as a tool, we start our
investigation of roots of a polynomial.

Lemma 4.20

Let p(Z) ∈ C[Z] be a polynomial of degree n ≥ 1 and let λ ∈ C be a complex
number. The number λ is a root of p(Z) if and only if Z− λ is a factor of p(Z).

Proof. If Z− λ is a factor of p(Z), then there exists a polynomial q(Z) ∈ C[Z] such that
p(Z) = (Z− λ) · q(Z). Therefore it then holds that p(λ) = 0 · q(λ) = 0. This shows that
λ is a root of p(Z) if Z− λ is a factor of p(Z)

Now suppose that λ is a root of p(Z). Using the division algorithm we can find polyno-
mials q(Z) and r(Z) such that

p(Z) = (Z− λ) · q(z) + r(Z), (4-5)

where r(Z) is the zero polynomial, or deg(r(Z)) < deg(Z − λ) = 1. Since r(Z) = 0
or deg(r(Z)) < 1, we see that r(Z) actually is a constant r ∈ C. By setting Z = λ in
Equation (4-5), we get that p(λ) = r + 0 = r. Therefore we actually have shown that
p(Z) = (Z−λ) · q(Z)+ p(λ). If λ is a root of p(Z) (that is to say p(λ) = 0), we therefore
get that Z− λ is a factor of p(Z).

Using this lemma we can define the multiplicity of a root.
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Definition 4.21

Let λ be a root of a polynomial p(Z). The multiplicity of the root is defined to be the
largest natural number m ∈ N such that (Z− λ)m is a factor of p(Z). One says that
λ is a root of p(Z) of multiplicity m.

Note that Lemma 4.20 implies that any root of a polynomial has multiplicity at least 1.
A root of multiplicity two is sometimes called a double root.

Example 4.22

Decide if −3 is a root of the following polynomials. If yes, determine its multiplicity.

• p1(Z) = 2Z2 + 3Z− 9.

• p2(Z) = Z2 + 3Z + 1.

• p3(Z) = Z3 + 3Z2 − 9Z− 27.

• p4(Z) = (2Z2 + 3Z− 9) · (Z3 + 3Z2 − 9Z− 27) = 2Z5 + 9Z4 − 18Z3 − 108Z2 + 243.

Answer:

1. We have p1(−3) = 18− 9− 9 = 0. Therefore is−3 a root of the polynomial 2Z2 + 3Z−
9. We have seen in Example 4.18 that 2Z2 + 3Z − 9 = (Z + 3) · (2Z − 3). This means
that the multiplicity of the root−3 equals 1. We can also see that the factor 2Z− 3 gives
rise to another root of p1(Z), namely the root 3/2. This root also has multiplicity 1.

2. We have p2(−3) = 1. Therefore −3 is not a root of p2(Z).

3. This time we have p3(−3) = 0, so −3 is a root of p3(Z). Using the division algorithm,
we find:

Z + 3 Z3 + 3Z2− 9Z− 27 Z2 − 9
Z3 + 3Z2

− 9Z− 27
− 9Z− 27

0

Therefore it holds that Z3 + 3Z2− 9Z− 27 = (Z + 3) · (Z2− 9). The number −3 is also
a root of the polynomial Z2− 9, so the multiplicity of the root −3 is at least 2. Actually,
it holds that Z2 − 9 = (Z + 3) · (Z− 3), so Z3 + 3Z2 − 9Z− 27 = (Z + 3) · (Z2 − 9) =
(Z + 3)2 · (Z − 3). This means that the root −3 of p3(Z) has multiplicity 2. We also
showed that 3 is a root of p3(Z) and that this root has multiplicity 1.
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4. We have p4(Z) = p1(Z)p3(Z). From the first and the third part of this example, we get
that p4(Z) = (Z + 3)3 · (2Z− 3) · (Z− 3). This means that the root −3 has multiplicity
3. We also see that the numbers 3/2 and 3 are roots of p4(Z), both with multiplicity 1.
The graph of real polynomial function that p4(Z) gives rise to, is given in Figure 4.3.

−4 −2 2

−100

100

200

z

p(z)

Figure 4.3: The graph of the polynomial function p : R→ R, where p(z) = 2z5 + 9z4 −
18z3 − 108z2 + 243.

The above example illustrates that there is a one to one correspondence between factors
of degree one of a polynomial and the roots of a polynomial. The fundamental theorem
of algebra (Theorem 4.19) says that each polynomial of degree at least 1 has a root. This
has the following consequence:

Theorem 4.23

Let p(Z) = anZn + an−1Zn−1 + · · · + a1Z + a0 be a polynomial of degree n > 0.
Then there exist λ1, ..., λn ∈ C such that

p(Z) = an · (Z− λ1) · · · (Z− λn).

Proof. According to the fundamental theorem of algebra there exists a root λ1 ∈ C of the
polynomial p(Z). Using Lemma 4.20, we can write p(Z) = (Z− λ1)q1(Z) for a certain
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polynomial q1(Z). Note that deg(q1(Z)) = deg(p(Z))− 1. If q1(Z) is a constant, we are
done. Otherwise, we can apply the fundamental theory of algebra to the polynomial
q1(Z) and find a root λ2 ∈ C of q1(Z). Again using Lemma 4.20, we can write q1(Z) =
(Z − λ2) · q2(Z). This implies that p(Z) = (Z − λ1) · (Z − λ2) · q2(Z). Continuing in
this way, we can write p(Z) as a product of polynomials of degree one of the form Z− λ

times a constant c. Since the leading coefficient of p(Z) is an, this constant c is equal to
an.

Example 4.24

As an example we take the polynomial p4(Z) = 2Z5 + 9Z4 − 18Z3 − 108Z2 + 243 from Ex-
ample 4.22. We wish to write this polynomial as in Theorem 4.23. We have already seen that
p4(Z) = (Z + 3)3 · (2Z− 3) · (Z− 3). By pulling out the 2 from the factor 2Z− 3 we get:

p4(Z) = 2 · (Z + 3)3 · (Z− 3/2) · (Z− 3) = 2 · (Z + 3) · (Z + 3) · (Z + 3) · (Z− 3/2) · (Z− 3).

In the notation of Theorem 4.23 we find that λ1 = −3, λ2 = −3, λ3 = −3, λ4 = 3/2, and
λ5 = 3. This illustrates once more that the multiplicities of the roots −3, 3/2, and 3 are 3, 1,
and 1. Note that the sum of all multiplicities is equal to 5, which is the degree of p4(Z).

In fact it always holds that the sum of all multiplicities of the roots of a polynomial is
equal to its degree. In words one can therefore reformulate Theorem 4.23 as follows:
a polynomial of degree n ≥ 1 has exactly n roots, if the roots are counted with their
multiplicities. For polynomials in R[Z], Theorem 4.23 has the following consequence

Corollary 4.25

Any polynomial p(Z) ∈ R[Z] of degree at least one, can be written as the product
of degree one and degree two polynomials from R[Z].

Proof. According to Theorem 4.23 any nonzero polynomial p(Z) can be written as the
product of the leading coefficient of p(Z) and degree one factors of the form Z− λ. The
λ ∈ C is a root of the polynomial p(Z). Applying this to a polynomial p(Z) with real
coefficients, we see that the leading term is a real number as well, but the roots λ do not
have to be real numbers. However, any real root λ gives rise to a factor of degree one
with real coefficients, namely Z− λ.



Note 4 4.6 ROOTS, MULTIPLICITIES AND FACTORIZATIONS 25

Now let λ ∈ C \R be a root of p(Z). Let us write λ = a + bi in rectangular form. Since
λ 6∈ R, we know that b 6= 0. Lemma 4.12 implies that then the number λ = a− bi is also
a root of p(Z). Moreover, λ 6= λ, since b 6= 0. Hence Z− λ and Z− λ are two distinct
factors of p(Z) if we would work in C[Z]. Now the idea is to multiply the factors Z− λ

and Z− λ together, since it turns out that (Z− λ) · (Z− λ) has real coefficients. Indeed,
we have

(Z− λ) · (Z− λ) = Z2 − (λ + λ)Z + λλ

= Z2 − (a + bi + a− bi)Z + (a + bi) · (a− bi)

= Z2 − 2aZ + (a2 + b2),

which indeed is a polynomial of degree two in R[Z] since its coefficients are real num-
bers. In this way we can transform the factorization of p(Z) in C[Z] from Theorem 4.23
into a factorization of p(Z) in R[Z] in first and second degree factors with real coeffi-
cients.

Example 4.26

Write the following polynomials as a product of degree one and degree two polynomials
with real coefficients.

1. p1(Z) = Z3 − Z2 + Z− 1

2. p2(Z) = Z4 + 4

Answer:

1. The number 1 is a root of p1(Z), since p(1) = 0. Using the division algorithm, one
can show that p1(Z) = (Z − 1) · (Z2 + 1). The polynomial Z2 + 1 does not have any
real root and therefore cannot be factorized further over the real numbers (over the
complex numbers one could: Z2 + 1 = (Z + i) · (Z − i)). The desired factorization is
therefore:

Z3 − Z2 + Z− 1 = (Z− 1) · (Z2 + 1).

2. Using the theory of Section 4.4 we can find all roots of the polynomial Z4 + 4. In this
way one can find the roots 1 + i, 1− i,−1 + i and −1− i. Therefore we have that

Z4 + 4 = (Z− (1 + i)) · (Z− (1− i)) · (Z− (−1 + i)) · (Z− (−1− i)).

As in the proof of Corollary 4.25 we can multiply pairs of complex conjugated factors
together to get rid of the complex coefficients. Then we find that

(Z− (1 + i)) · (Z− (1− i)) = Z2 − 2Z + 2
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and
(Z− (−1 + i)) · (Z− (−1− i)) = Z2 + 2Z + 2.

The desired factorization of Z4 + 4 is therefore

Z4 + 4 = (Z2 − 2Z + 2) · (Z2 + 2Z + 2).
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