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Note 6

Systems of linear equations

6.1 Structure of systems of linear equations

When dealing with an equation in one variable, it is very common to use the variable
x. In Example 1.17, we studied for example the equation 2|x| = 2x + 1. Often there is
not just one variable, but several. If there are two variables, one often uses x and y, if
there are three x, y and z, but what to do if there are more variables, say five variables?
In such cases it is common to use variables x1, x2, etcetera. For example, if we need five
variables, we just use x1, x2, x3, x4 and x5. We can even leave the precise number of
variables unspecified and say that we have n variables for some natural number n ∈N.
One says that one has an equation in the n variables x1, . . . , xn.

A linear equation in the n variables x1, . . . , xn is an equation of the form

a1 · x1 + · · · an · xn = b,

where a1, . . . , an, b are constants. These constants will typically be real or complex num-
bers, depending on the situation. To avoid having to specify all the time if we are work-
ing with real or complex numbers, let us introduce the following definition:
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Definition 6.1

A set F is called a field, if there is an addition + and multiplication · defined for all
pairs of elements of F in such a way that the following rules are satisfied:

1. Addition and multiplication are associative: a1 + (a2 + a3) = (a1 + a2) + a3, and
a1 · (a2 · a3) = (a1 · a2) · a3 for all a1, a2, a3 ∈ F.

2. Addition and multiplication are commutative: a1 + a2 = a2 + a1, and a1 · a2 =
a2 · a1 for all a1, a2, a3 ∈ F.

3. Distributivity of multiplication over addition holds: a1 · (a2 + a3) = a1 · a2 + a1 ·
a3 for all a1, a2, a3 ∈ F.

4. Addition and multiplication have a neutral element, that is to say certain ele-
ments in F usually denoted by 0 and 1 that satisfy a + 0 = a and a · 1 = a for
all a ∈ F.

5. Additive inverses exist: for every a ∈ F, there exists an element in F, denoted
by −a and called the additive inverse of a, such that a + (−a) = 0.

6. Multiplicative inverses exist: for every a ∈ F \ {0}, there exists an element in
F, denoted by a−1 or 1/a and called the multiplicative inverse of a, such that
a · a−1 = 1.

Theorems 3.10 and 3.11 together simply state that the complex numbers form a field.
Also the real numbers R with the usual addition and multiplication form a field. There
are many more possible examples of fields, but whenever we use the symbol F or write
something like “the field F”, you can just think of R or C. Just to show that there exist
more fields, we give two examples.

Example 6.2

Let F = Q be the set of rational numbers, see Example 2.4. This set, equipped with the usual
addition and multiplication, is a field. It is called the field of rational numbers.
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Example 6.3

Let F2 = {0, 1} and define addition and multiplication as follows: 0 + 0 = 0, 0 + 1 = 1, 1 +

0 = 1, 1 + 1 = 0 and 0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0, 1 · 1 = 1. Then with this addition and
multiplication, F2 is a field. It is called the field of bits, the binary field, or also the finite field
with two elements.

Returning to our study of linear equations, we can now give a more precise definition.

Definition 6.4

A linear equation over a field F in the n variables x1, . . . , xn, is an equation of the
form

a1 · x1 + · · ·+ an · xn = b,

where a1, . . . , an, b ∈ F.
A solution to this linear equation is an n-tuple (v1, . . . , vn) ∈ Fn such that a1 · v1 +
· · ·+ an · vn = b.

We have seen the notation Fn in this definition before in Section 2.1, see equation (2-3).
It is the Cartesian product of F with itself n times. More down to earth, Fn is simply the
set of all n-tuples (v1, . . . , vn), where each coordinate is an element from F. Sometimes
the multiplication between the constant and variables are omitted. For example 2x1 has
the same meaning as 2 · x1.

There is a subtlety in Definition 6.4 that is easy to miss. If we say that we consider a
linear equation over F, we are only interested in solutions (v1, . . . , vn) that lie in Fn. In
other words, by specifying that the linear equation is over F, we implicitly say that all
the coordinates of a solution (v1, . . . , vn) must lie in F. Let us consider a few examples.

Example 6.5

1. Find a solution to the linear equation 3x1 + x2 = 5 over R.

2. Consider the linear equation x1 + x2 = 0 over C. Is (i,−i) ∈ C2 a solution to this linear
equation?

3. Consider the linear equation x1 + x2 = 0 over R. Is (i,−i) ∈ C2 a solution to this linear
equation?
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4. Consider the linear equation x1 + x2 = 0 over R. Find a solution.

Answer:

1. There are many possible solutions, but for example (v1, v2) = (0, 5) is a solution, since
3 · 0 + 5 = 5.

2. Since i + (−i) = 0, the pair (i,−i) ∈ C2 is indeed a solution to the linear equation
x1 + x2 = 0 over C.

3. Even though i + (−i) = 0, the pair (i,−i) is not a solution to the linear equation x1 +

x2 = 0 over R. The reason is that the pair (−i, i) is not an element of R2.

4. A possible solution is (1,−1). Another solution is (0, 0).

Now we arrive at the main topic of this section, namely systems of linear equations. It
is simply an extension of Definition 6.4 by not considering only one linear equation, but
several linear equations over a field F at the same time.

Definition 6.6

A system of m linear equations R1, . . . , Rm over a field F in the n variables x1, . . . , xn,
is a system of m equations of the form

R1 : a11 · x1 + · · · + a1n · xn = b1
R2 : a21 · x1 + · · · + a2n · xn = b2

...
...

Rm : am1 · x1 + · · · + amn · xn = bm

where a11, . . . , amn, b1, . . . , bm ∈ F.
A solution to this system of linear equations is an n-tuple (v1, . . . , vn) ∈ Fn such that
for all j between 1 and m it holds that aj1 · v1 + · · ·+ ajn · vn = bj.

Some explanation of the notation is in order. First of all, a double index was used for
the constants in front of the variables. The constant aij denotes the constant occurring
in equation i in front of the variable xj. For example, if we have at least two equations
and at least three variables, then a23 would denote the constant in the second equation
in front of the variable x3. In case m = 1 in Definition 6.6, we just recover the case of
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one linear equation as described in Definition 6.4.

The use of the brace { in front of the equations is just to emphasize that all equations are
considered simultaneously and that a solution to the system should satisfy all equations
at the same time. In logical terms, we can therefore write that an n-tuple (v1, . . . , vn) ∈
Fn is a solution to the system of equations as given in Definition 6.6 precisely if:

a11 · v1 + · · ·+ a1n · vn = b1 ∧ · · · ∧ am1 · v1 + · · ·+ amn · vn = bm.

Using R1, . . . , Rm as “labels” for the equations, is not necessary and often these labels
are just omitted. We will usually also omit these labels, but when developing the theory
on how to solve systems of linear equations, they can be quite convenient. To digest this
definition, let us immediately consider some examples.

Example 6.7

Determine the set of solutions to the following system of two linear equations in two variables
over R: {

x1 + 2x2 = 1
x2 = 2

This system is quite simple to solve, since the second equation already determines x2 (namely
x2 = 2). Then using this in the first equation, we see that any pair (x1, x2) that satisfies both
linear equations, will satisfy x2 = 2 and x1 = 1− 2x2 = 1− 2 · 2 = −3. Hence the system
has only one solution, namely (x1, x2) = (−3, 2). The set of all solutions is therefore given by
{(−3, 2)}.

Example 6.8

Consider the following system of linear equations over R in the variables x1, . . . , x4:{
2x1 + 5x2 + x4 = 0

3x1 − x3 = 6

Let us see how this example fits with Definition 6.6. First of all, we have two linear equations
and hence m = 2. Further, the only variables occurring in these three equations are x1, x2, x3

and x4. Hence we can choose n = 4. To determine the aij is now a matter of reading off the
constants in front of the variables. However, before we do this, it is convenient to rewrite the
system of equations a bit as follows:{

2 · x1 + 5 · x2 + 0 · x3 + 1 · x4 = 0
3 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6
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We can now read off directly that a11 = 2, a12 = 5, a13 = 0, a14 = 1, b1 = 0, a21 = 3, a22 = 0,
a23 = −1, a24 = 0 and b2 = 6. We will determine the solutions of this system of linear
equations later.

A system of m linear equations over a field F in the n variables x1, . . . , xn is called ho-
mogeneous, if for all i between 1 and m, it holds that bi = 0. Otherwise, the system is
called inhomogeneous. The system given in Example 6.8 is inhomogeneous, since in that
example b2 ̸= 0. An example of a homogeneous system of linear equations in three
variables is: {

3 · x1 + 5 · x2 + 10 · x3 = 0
5 · x1 + 2 · x2 − 2 · x3 = 0

Note that the all-zero tuple (0, 0, 0) is a possible solution to this system. More generally,
one can show that a homogeneous system of linear equations in n variables has the
all-zero n-tuple (0, . . . , 0) as solution. Let us end this section by giving two structure
theorems concerning the solution sets of systems of linear equations. One will be for
homogeneous systems, one for inhomogeneous systems.

Theorem 6.9

Let a homogeneous system of m linear equations R1, . . . , Rm over a field F in the n
variables x1, . . . , xn be given, say

a11 · x1 + · · · + a1n · xn = 0
a21 · x1 + · · · + a2n · xn = 0

...
...

am1 · x1 + · · · + amn · xn = 0

where a11, . . . , amn ∈ F. Then

1. The all-zero tuple (0, . . . , 0) ∈ Fn is a solution to the system.

2. If (v1, . . . , vn) ∈ Fn is a solution and c ∈ F, then (c · v1, . . . , c · vn) is also a
solution.

3. If (v1, . . . , vn), (w1, . . . , wn) ∈ Fn are solutions, then (v1 + w1, . . . , vn + wn) is
also a solution.

Proof. We have already remarked that the all-zero tuple is a solution to a homogeneous
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system. We will prove the third statement and leave proving the second statement to
the reader. If (v1, . . . , vn), (w1, . . . , wn) ∈ Fn are solutions, then we know that for all j
between 1 and m that:

aj1 · v1 + · · ·+ ajn · vn = 0 and aj1 · w1 + · · ·+ ajn · wn = 0.

Adding these equations, we find that

aj1 · v1 + aj1 · w1 + · · ·+ ajn · vn + ajn · wn = 0,

which can be rewritten as

aj1 · (v1 + w1) + · · ·+ ajn · (vn + wn) = 0.

The reader is encouraged to think about which properties of a field from Definition 6.1
we have used here. Since this is true for any j, we may conclude that (v1 + w1, . . . , vn +
wn) is also a solution to the given homogeneous system of linear equations.

Theorem 6.10

Let an inhomogeneous system of m linear equations R1, . . . , Rm over a field F in the
n variables x1, . . . , xn be given, say

a11 · x1 + · · · + a1n · xn = b1
a21 · x1 + · · · + a2n · xn = b2

...
...

am1 · x1 + · · · + amn · xn = bm

where a11, . . . , amn, b1, . . . , bm ∈ F and not all bi are zero. If the system does
have a solution, say (v1, . . . , vn) ∈ Fn, then any other solution is of the form
(v1 + w1, . . . , vn + wn), where (w1, . . . , wn) ∈ Fn is a solution to the corresponding
homogeneous system:

a11 · x1 + · · · + a1n · xn = 0
a21 · x1 + · · · + a2n · xn = 0

...
...

am1 · x1 + · · · + amn · xn = 0

Proof. Suppose that the system has a solution, say (v1, . . . , vn) ∈ Fn. Let (v′1, . . . , v′n) ∈
Fn be any other solution. First of all, if we define wi = v′i − vi, then by definition of
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the wi, we obtain that (v′1, . . . , v′n) = (v1 + w1, . . . , vn + wn). Hence what we need to
show is that the tuple (w1, . . . , wn) is a solution to the homogeneous system stated in
the theorem. However, we know that for all j:

aj1 · v′1 + · · ·+ ajn · v′n = bj and aj1 · v1 + · · ·+ ajn · vn = bj.

Taking the difference of these two equations, we obtain:

aj1 · v′1 − aj1 · v1 + · · ·+ ajn · v′n − ajn · vn = bj − bj,

which can be rewritten as

aj1 · (v′1 − v1) + · · ·+ ajn · (v′n − vn) = 0.

Since wi = v′i − vi, we obtain that for all j it holds that

aj1 · w1 + · · ·+ ajn · wn = 0.

This is exactly the same as saying that (w1, . . . , wn) is a solution to the homogeneous
system given in the theorem.

It is not a coincidence that Theorem 6.10 is formulated as it is. Indeed, the theorem
holds if there exists a solution to the inhomogeneous system, but there is no guarantee
that such a solution actually exists. A solution to an inhomogeneous system of linear
equations is sometimes called a particular solution. Theorem 6.10 can then in words be
described as stating that all solutions to an inhomogeneous system can be obtained as
the sum of a given particular solution (if it exists) and the solutions to the corresponding
homogeneous system.

Let us for the sake of completeness, give a small example of an inhomogeneous system
of linear equations that has no solutions:

Example 6.11

Consider the following system of two linear equations in two variables over R:{
x1 + x2 = 1
x1 + x2 = 0

.

This system is inhomogeneous, since the right-hand side of the first equation is not a zero.
This system has no solutions, since it is not possible that x1 + x2 is equal to 1 and 0 at the
same time! Indeed if that would be possible, we could conclude that 0 = 1, which would be
a contradiction.
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To make Theorems 6.9 and 6.10 constructive, we need to figure out a way to answer the
following three questions:

1. How do we describe all solutions to a homogeneous system of linear equations
explicitly?

2. How do we decide if an inhomogeneous system of linear equations has a solution?

3. If it exists, how do we explicitly find a solution to an inhomogeneous system of
linear equations?

Note that if we can answer these questions, Theorem 6.10 can be used to describe all so-
lutions to an inhomogeneous system of linear equations that have at least one solution.
In the next sections we will answer these questions.

6.2 Transforming a system of linear equations

In this section, we will come up with a procedure that transforms a given system of
linear equations into a simpler one, without changing the solutions they have. In other
words, we want to find a way to replace a possibly complicated looking system of linear
equations with another, much simpler system of linear equations, but we want that the
initial, possibly complicated, system has exactly the same solutions as the simpler one.

Before we start with that though, we will introduce a compact way to describe a system
of linear equations using what are known as matrices. For now you can think of a matrix
as a rectangular scheme containing elements from the field F one is working over. In a
later chapter, we will have a more in depth discussion of matrices.
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Definition 6.12

Given a linear system
a11 · x1 + · · · + a1n · xn = b1
a21 · x1 + · · · + a2n · xn = b2

...
...

am1 · x1 + · · · + amn · xn = bm

we denote by  a11 · · · a1n
...

...
am1 · · · amn


the coefficient matrix of the system of linear equations. The matrix a11 · · · a1n b1

...
...

...
am1 · · · amn bm


is called the augmented matrix of the system of linear equations.

Example 6.13

Let us consider the system of linear equations as given in Example 6.8. The coefficient matrix
of this system is given by [

2 5 0 1
3 0 −1 0

]
,

while the augmented matrix of this system is[
2 5 0 1 0
3 0 −1 0 6

]
.

Sometimes one writes [
2 5 0 1 0
3 0 −1 0 6

]
for the augmented matrix to emphasize that the final 0 and 6 come from the right-hand side
of the system of linear equations. This is just an esthetic choice though.
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One says that a matrix has rows and columns. A row is a horizontal slice of a matrix, a
column a vertical slice. For example, the matrix[

2 6 0 1 0
4 0 −1 0 6

]
has two rows: the first row is given by [2 6 0 1 0], while the second row is given by
[4 0 − 1 0 6]. Similarly, it has five columns, namely[

2
4

]
,
[

6
0

]
,
[

0
−1

]
,
[

1
0

]
, and

[
0
6

]
.

A matrix is said to be an m× n matrix, if it has precisely m rows and precisely n columns.
Hence the matrix we just considered is a 2× 5 matrix. If we consider the matrices in
Definition 6.12, we see that the coefficient matrix of a system of m linear equations in n
variables is an m× n matrix. Similarly, its augmented matrix is an m× (n + 1) matrix.
Indeed, it has one more column than the coefficient matrix, containing the bi from the
right-hand sides of the linear equations.

Now let us return to our goal: transforming a system of linear equations over a field F

into a simpler one, without changing the solution set. The idea is to gradually transform
any given system over F into a much simpler system, at each step making sure that the
set of solutions did not change. The operations that we will use to transform the systems
will consist of three types:

1. Interchange two equations.

2. Multiply a given equation with a nonzero constant from F.

3. Add a multiple of one equation to another.

Let us explain, what these three operations do in more detail. The first one takes two
linear equations from a given system, say Ri and Rj, and interchanges them. This means
that after the operation Rj occurs in position i and Ri in position j. We denote this
operation by Ri ↔ Rj.

Example 6.14

Let us illustrate the interchange operation on the system from Example 6.8:{
2 · x1 + 6 · x2 + 0 · x3 + 1 · x4 = 0
4 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6

.
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In this case, we can perform the operation R1 ↔ R2 and obtain the system{
4 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6
2 · x1 + 6 · x2 + 0 · x3 + 1 · x4 = 0

.

If we, which in fact is more convenient, work with the augmented matrix of this system, the
effect of the operation R1 ↔ R2 is that the augmented matrix[

2 6 0 1 0
4 0 −1 0 6

]
is replaced by [

4 0 −1 0 6
2 6 0 1 0

]
.

Hence the operation R1 ↔ R2 simply interchanges the first and the second row of the aug-
mented matrix. We will usually write this as follows:[

2 6 0 1 0
4 0 −1 0 6

]
−→

R1 ↔ R2

[
4 0 −1 0 6
2 6 0 1 0

]
.

The second operation we will use to simplify systems just multiplies one of the given
linear equations with a nonzero constant c ∈ F (in other words c ∈ F \ {0}). This simply
means that one replaces the linear equation Rj, say given by aj1x1 + · · · + ajnxn = bj,
with the linear equation caj1x1 + · · ·+ cajnxn = cbj (which is for simplicity just denoted
by c · Rj). We denote this operation by Rj ← c · Rj.

Example 6.15

Let us illustrate the operation R1 ← (1/2) · R1 on the system from Example 6.8. This amounts
to replacing the system{

2 · x1 + 6 · x2 + 0 · x3 + 1 · x4 = 0
4 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6

by {
1 · x1 + 3 · x2 + 0 · x3 + 1/2 · x4 = 0
4 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6

.

In matrix notation, we obtain[
2 6 0 1 0
4 0 −1 0 6

]
−→

R1 ← (1/2) · R1

[
1 3 0 1/2 0
4 0 −1 0 6

]
.

Hence the effect of the operation R1 ← (1/2) · R1 on the augmented matrix is that all entries
in the first row are multiplied with 1/2. We have used the arrow −→ to indicate one step
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when changing the matrix. Later on, we will gradually change the matrix and use the arrow
−→, each time an operation is used. Below the arrow, we write which operation is used (in
this case R1 ← (1/2) · R1 ).

Finally, the third operation, adding d times equation Rj to an equation Ri (where i ̸= j
and d ∈ F), simply means that the linear equation Ri given by ai1x1 + · · ·+ ainxn = bi is
replaced by the equation (ai1 + daj1)x1 + · · ·+ (ain + dajn)xn = bi + dbj. One can briefly
state this by writing that the linear equation Ri is replaced by Ri + d · Rj, or in other
words as Ri ← Ri + d · Rj.

Example 6.16

Again let us use the system from Example 6.8 to illustrate the effect of the operation R1 ←
R1 + 2 · R2. This amounts to replacing the system{

2 · x1 + 6 · x2 + 0 · x3 + 1 · x4 = 0
4 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6

by {
10 · x1 + 6 · x2 + (−2) · x3 + 1 · x4 = 12
4 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6

.

In matrix notation, we obtain[
2 6 0 1 0
4 0 −1 0 6

]
−→

R1 ← R1 + 2 · R2

[
10 6 −2 1 12
4 0 −1 0 6

]
.

Hence the effect of the operation R1 ← R1 + 2 · R2 on the augmented matrix, is that the first
row is replaced by the first row plus two times the second row.

As is clear from the examples, the effect of the three operations Ri ↔ Rj, Rj ← c · Rj,
and Ri ← Ri + d · Rj can be seen as easy operations on the rows of the augmented
matrix of the system of linear equations we started with. For this reason, they are called
elementary row operations. This is in fact also the reason why we used capital R in the
labels R1, . . . , Rm for the linear equations in our system: the R simply was inspired by
the first letter in the word “row”.

Now let us make sure that when using any of these elementary operations, the solution
set of the new system is identical to that of the original system of linear equations. In
fact, let us state this as a theorem:
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Theorem 6.17

Let R1, . . . , Rm be a system of m linear equations in n variables over a field F. Fur-
ther, let i and j be two distinct integers between 1 and m. Then any of the systems
obtained by applying one of the operations Ri ↔ Rj, Rj ← c · Rj, with c ∈ F \ {0} or
Ri ← Ri + d · Rj, with d ∈ F, has the same set of solutions as the original system.

Proof. We only prove the theorem for the elementary operation Ri ← Ri + d · Rj. The
reader is encouraged to check that the theorem is also true for the remaining two ele-
mentary operations. We need to show that the set of solutions of the system of linear
equations R1, . . . , Ri−1, Ri, Ri+1, . . . , Rm is the same as the set of solutions of the system
given by R1, . . . , Ri−1, Ri + d · Rj, Ri+1, . . . , Rm. Let us denote the first set of solutions by
S and the second set by T. We wish to show that S = T.

First of all, we claim that S ⊆ T. Therefore, let us choose arbitrary (v1, . . . , vn) ∈ S. We
want to show that (v1, . . . , vn) ∈ T. In other words, assuming that (v1, . . . , vn) ∈ Fn

is a common solution to the linear equations R1, . . . , Rm, we need to show that it also
is a common solution to the linear equations R1, . . . , Ri−1, Ri + d · Rj, Ri+1, . . . , Rm. But
then we only need to show that (v1, . . . , vn) is a solution to Ri + d · Rj. This is certainly
true, since if (v1, . . . , vn) is a common solution to Ri and Rj, then it is also a solution to
Ri + d · Rj for any constant d ∈ F. Hence (v1, . . . , vn) ∈ T. Since we chose (v1, . . . , vn) ∈
S arbitrarily, this implies that S ⊆ T.

Now we claim that T ⊆ S. We choose arbitrary (v1, . . . , vn) ∈ T and now want to
show that (v1, . . . , vn) ∈ S. This means that we may assume that (v1, . . . , vn) ∈ Fn

is a common solution to the linear equations R1, . . . , Ri−1, Ri + d · Rj, Ri+1, . . . , Rm. We
need to show that (v1, . . . , vn) is a solution to Ri. However, this is true, since Ri =
(Ri + d · Rj)− d · Rj. Hence (v1, . . . , vn) ∈ S. Since we chose (v1, . . . , vn) ∈ T arbitrarily,
this implies that T ⊆ S.

Now that we have shown that S ⊆ T and T ⊆ S, Lemma 2.6 implies that S = T, which
is what we wanted to show.

It turns out that with these three rather elementary operations in hand, we can find the
set of solutions to any system of linear equations. Using one elementary row operation,
may not simplify a system of linear equation so much, but the idea is that if we use
several elementary row operations in succession, we can transform any given system
into a much simpler one. In the next sections, we will see how, but for now, let us
consider an example.
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Example 6.18

Let us revisit Example 6.8. There we considered the following system of 2 equations in 4
variables over R: {

2 · x1 + 6 · x2 + 0 · x3 + 1 · x4 = 0
4 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6

.

Let us simplify this system, applying elementary row operations. As we have seen in Theo-
rem 6.17, this does not change the solution set of the system. Since it is much more compact
to work with the augmented matrix of the system, let us do that as well.

First, applying the transformation R1 ← (1/2) · R1, we obtain the augmented matrix:[
2 6 0 1 0
4 0 −1 0 6

]
−→

R1 ← (1/2) · R1

[
1 3 0 1/2 0
4 0 −1 0 6

]
.

The point of this operation, was to get a one in the first entry of the first row. This makes it
easy to eliminate the x1 variable from the second equation. In other words, in the next step
we want to create a zero in the first entry of the second row. We achieve this applying the
elementary row operation R2 ← R2 − 4 · R1, since then we obtain[

1 3 0 1/2 0
4 0 −1 0 6

]
−→

R2 ← R2 − 4 · R1

[
1 3 0 1/2 0
0 −12 −1 −2 6

]
.

Now we simplify further, by making the coefficient for x2 in the second equation equal to
one. In other words, we now want to make the second entry in the second row equal to one.
To achieve this, we apply R2 ← (−1/12) · R2:[

1 3 0 1/2 0
0 −12 −1 −2 6

]
−→

R2 ← (−1/12) · R2

[
1 3 0 1/2 0
0 1 1/12 2/12 −6/12

]
.

The fractions in the resulting matrix can actually be simplified a bit, so we could also have
written:[

1 3 0 1/2 0
0 −12 −1 −2 6

]
−→

R2 ← (−1/12) · R2

[
1 3 0 1/2 0
0 1 1/12 1/6 −1/2

]
.

The corresponding system is now nearly as simple as we can make it, but we can still use the
second equation to get rid of the x2 term in the first equation using R1 ← R1 − 3 · R2:[

1 3 0 1/2 0
0 1 1/12 1/6 −1/2

]
−→

R1 ← R1 − 3 · R2

[
1 0 −1/4 0 3/2
0 1 1/12 1/6 −1/2

]
.

The corresponding system of linear equations is:{
x1 + (−1/4) · x3 = 3/2

x2 + (1/12) · x3 + (1/6) · x4 = −1/2
.
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It is important to remember that by Theorem 6.17, the set of solutions to this last system, is
exactly the same as the set of solutions to the system we started with.

It is easy to find solutions (v1, v2, v3, v4) ∈ R4 to the last system: simply choose v3, v4 ∈ R

as you want, then use the linear equations to solve for v1 and v2. For example, if we choose
v3 = 0 and v4 = 3, then we find that v1 = (1/4)v3 + 3/2 = 3/2 and v2 = −(1/12)v3 +

(−1/6)v4 − 1/2 = −1. Hence (3/2,−1, 0, 3) is a solution to the system. More, and in fact
all, solutions can be obtained in this way: choose any value for v3 and v4 that you like and
determine the corresponding v1 and v2 from the equations v1 = (1/4)v3 + 3/2 and v2 =

−(1/12)v3 + (−1/6)v4 − 1/2.

This example shows that it can help a great deal to simplify a given system of linear
equation first, before trying to solve it.

6.3 The reduced row echelon form of a matrix

We have seen in Example 6.18 that using elementary row operations, can help to de-
scribe the solution set of a system of linear equations. What we will do now is to show
that this approach always works. Rather than working with systems of linear equations,
we will work with the coefficient and augmented matrix of the system. We have seen
that if the system consists of m linear equations in n variables, then the coefficient matrix
is an m× n matrix, while the augmented matrix is an m× (n + 1) matrix. The entries in
these matrices are from F, the field we are working over. As mentioned before, we will
typically work with either F = R, the real numbers, or F = C, the complex numbers.
The set of all m× n matrices with entries in F will be denoted by Fm×n. In formulas, we
will typically use bold face letters, such as A, B, . . . for matrices.

We begin by defining a special kind of matrix:
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Definition 6.19

Let F be a field and A ∈ Fm×n an m× n matrix with entries in F. One says that A is
in reduced row echelon form, if all of the following are fulfilled.

1. If a row of the matrix contains only zeros, it appears at the bottom of the matrix.
Such rows are called zero rows.

2. The left-most non-zero entry in any non-zero row is equal to 1. This entry is
called the pivot of the row.

3. Pivots of two non-zero rows of the matrix do not occur in the same column.
Moreover, the pivot of the upper row is further to the left than the pivot of the
lower row.

4. If a column of the matrix contains a pivot, then all other entries in that column
are 0.

A matrix satisfying the first three items, but not necessarily the fourth item, is said to be
in row echelon form.

Example 6.20

The 1× 4 matrices [0 0 0 0] and [0 0 1 5] are both in reduced row echelon form. Also the 2× 5
matrix [

1 0 −1/4 0 3/2
0 1 1/12 1/6 −1/2

]
which we obtained at the end of Example 6.18, is in reduced row echelon form.

An example of a 1× 4 matrix that is not in reduced row echelon form is: [0 0 2 0]. Indeed, the
left-most non-zero entry in the first (and only) row is not equal to 1. An example of a 3× 4
matrix that is not in reduced row echelon form is: 1 0 2 0 4

0 0 1 0 5
0 0 0 1 0

 .

This matrix is in row echelon form, but not in reduced row echelon form. The problem here
is the third column. This column contains a pivot, namely the pivot of the second row, but
apart from the pivot, this column contains another non-zero element (the 2).
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The reason that reduced row echelon forms are so important for us is the following
result:

Theorem 6.21

Let A ∈ Fm×n be a matrix. Then A can be brought into reduced row echelon form
using elementary row operations.

Proof. We will give a sketch of the proof. The strategy is to first bring the matrix in row
echelon form, and afterwards in reduced row echelon form. Let us therefore first show
that we can use elementary row operations to bring the matrix A in row echelon form.
To do this, we will use induction on m, the number of rows.

If m = 1 (the base case of the induction), then the only way A cannot be in row echelon
form, is if the row contains a non-zero entry and the left-most non-zero entry, say c, is
not equal to one. Then the operation R1 ← c−1 · R1 will bring A in row echelon form.

For the induction step, suppose m > 1 is given and that the theorem is true for (m −
1) × n matrices. If all entries in the matrix A are zero, it is already in row echelon
form (and in fact also reduced row echelon form) and we are done. Therefore, let us
now assume that the matrix A has at least one nonzero entry. We start by choosing the
smallest possible j such that the j-th column of A contains a nonzero entry. In particular,
if j > 1, then the first j− 1 columns of A are all zero columns. After this, we choose the
smallest possible i such that aij, the (i, j)-th entry of A, is nonzero. Now we perform
the operation R1 ↔ Ri. The first row of the resulting matrix has a nonzero entry in its
j-th position, say c, and zero entries in positions 1 up till j − 1. Next, we perform the
operation R1 ← c−1R1, implying that now the j-th entry in the first row has become a
1. If not all elements below this 1 are zeros, we use elementary operations of the form
Rj ← Rj + dR1 for suitably chosen d ∈ F to transform the matrix further into a matrix,
where there are only zeros below the pivot in row one. We have now transformed the
matrix A into a matrix B of the form

B =


0 · · · 0 1 ∗ · · · ∗
0 · · · 0 0 ∗ · · · ∗
...

...
...

...
...

0 · · · 0 0 ∗ · · · ∗

 .
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In this notation, the first part of the matrix B was given as
0 · · · 0
0 · · · 0
...

...
0 · · · 0

 .

This reflects the fact that the first j− 1 columns of B are zero. The notation is not meant
to suggest that the first part of B contains at least two zero columns. Indeed, if j = 2,
this part just consists of one zero column, since then j− 1 = 1. In the case that j = 1,
the first column of the matrix B is actually not zero at all, but is the column whose first
coordinate is 1 and otherwise contains zeroes.

Irrespective on the precise value of j, we now proceed by simply removing the first
row of the matrix B and denote the (m− 1)× n matrix that remains, by C. Using the
induction hypothesis, we can conclude that we can use elementary row operations to
transform the matrix C into a matrix Ĉ that is in row echelon form. Putting back the
first row from B, we find an m× n matrix, say Â, that is in row echelon form.

This concludes the inductive proof that any matrix can be brought in row echelon form
using elementary row operations. What remains to be done is to bring this matrix in
reduced row echelon form. We know by definition of row echelon form that pivots of
two non-zero rows of the matrix Â do not occur in the same column and moreover, that
the pivot of the upper row is further to the left than the pivot of a lower row. Therefore,
the entries below a pivot in the matrix Â, are zero. However, the entries above a pivot
in this matrix may not be zero. This can be achieved using elementary row operations
of the form Ri ← Ri + dRj, where row Rj contains a pivot and i < j. More precisely, we
start using the row containing the right-most pivot to create zeros above this pivot and
then work our way to the left, dealing with one pivot at the time. Once we have arrived
at the left-most pivot and carried out the sketched procedure for that pivot as well, the
obtained matrix will be in reduced row echelon form.

As an example, we can simply look at Example 6.18. There we used elementary row
operations to bring a matrix in reduced row echelon form. There are in principle many
different ways to use elementary row operations to transform a given matrix A into
reduced row echelon form. However, for a given matrix A, it turns out that the outcome
is always the same. Therefore we can talk about the reduced row echelon form of a
matrix A ∈ Fm×n. In particular, the following definition is justified:
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Definition 6.22

Let F be a field and A ∈ Fm×n a matrix. Then the rank of A, denoted by ρ(A), is
defined as the number of pivots in the reduced row echelon form of A.

The proof of Theorem 6.21 is very algorithmic in nature and can indeed be made into an
algorithm. Let us state the pseudo-code of an algorithm that computes a row echelon
form of a matrix. Note how closely it follows the first part of the proof of Theorem 6.21.
One could extend the algorithm and obtain pseudo-code of an algorithm that computes
the reduced row echelon form of a matrix, but we will not do that.

Algorithm 1 for computing a row echelon form of a matrix
Input: Positive integers m, n and an m× n matrix A ∈ Fm×n

Output: ref(A), the reduced row echelon form of A
1: if A = 0 then
2: ref(A)← 0,
3: if m = 1 and A ̸= 0 then
4: j← smallest column index such that A1 j ̸= 0
5: ref(A)← (A1 j)

−1 ·A
6: if m > 1 and A ̸= 0 then
7: j← least ℓ such that some row of A has non-zero ℓ-th entry
8: i← least i such that the ith row of A has nonzero j-th entry
9: B← the matrix obtained from A by applying R1 ↔ Ri

10: b← the ith entry of the first row of B
11: B← the matrix obtained from B by applying R1 ← b−1 · R1
12: r← the 1-st row of B
13: for i = 2...m do
14: b← the first entry of the i-th row of B
15: B← the matrix obtained from B by applying Ri ← Ri − bR1

16: C← the matrix obtained from B by deleting the first row
17: C← ref(C) (here the algorithm call itself recursively)
18: ref(A)← the matrix obtained by adding r on top of C

6.4 Computing all solutions to systems of linear equations

Up till now, we have usually written elements from Fn as n-tuples (a1, . . . , an). It is
quite common to identify Fn with Fn×1, that is to say, to identify an n-tuple with an



Note 6 6.4 COMPUTING ALL SOLUTIONS TO SYSTEMS OF LINEAR EQUATIONS 21

n× 1 matrix. Such a matrix only contains one column. This means for example that:

(1, 2, 4, 7) is identified with


1
2
4
7

 .

A small warning is in place. Even though, we will always identify Fn and Fn×1, some
books prefer to identify Fn and F1×n.

When performing elementary row operations, we have at times multiplied rows of a
matrix with an element c from F or added one row to another. A similar operation can
be performed on columns in a matrix. In particular, it is customary to define

c ·

 a1
...

an

 =

 c · a1
...

c · an

 and

 a1
...

an

+

 a′1
...

a′n

 =

 a1 + a′1
...

an + a′n

 .

This notation, combined with the theory of reduced row echelon matrices, will make it
possible to determine whether or not a given system of linear equations has solutions,
and if yes, to write all solutions down in a systematic way. Let us start with determining
when a system has a solution.

Theorem 6.23

Let a system of m linear equations in n variables over a field F be given. Denote by
A the coefficient matrix of the system and by [A|b] its augmented matrix. Then the
system has no solution if A and [A|b] do not have the same rank.

Proof. We know from Theorem 6.21, that there exists a sequence of elementary row op-
erations that brings the matrix A in its row reduced echelon form, say Â. Since the first n
columns of the augmented matrix [A|b] are identical with those of the coefficient matrix
A, applying exactly the same elementary row operations on [A|b] yields a matrix, say
B, whose first n columns are identical with those of the reduced row echelon form of A.
Therefore we can write B = [Â|b̂] for some b̂ ∈ Fm. Let us denote the bottom entry b̂ by
b̂m. If the bottom row of Â contains a pivot, then the matrix [Â|b̂] is in reduced row ech-
elon form. But then we see that the matrices A and [A|b] have the same rank, contrary
to the assumption given in the theorem that A and [A|b] do not have the same rank.
Therefore we may assume that the bottom row of Â does not contain a pivot, which
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simply means that this row is the zero row. If the last row of Â does not contain a pivot
and b̂m = 0, then the matrix [Â|b̂] is in reduced row echelon form and we can conclude
that ρ(A) = ρ([A|b]), again leading to a contradiction. Therefore we may assume that
the bottom row of Â does not contain a pivot and that b̂m ̸= 0. But then the bottom
row of the matrix [Â|b̂] corresponds to the equation 0 · x1 + · · · 0 · xm = b̂m. Since this
equation has no solution, Theorem 6.17 implies that the system we started with has no
solution either.

Example 6.24

As in Example 6.11, consider the following system of two linear equations in two variables
over R: {

x1 + x2 = 1
x1 + x2 = 0

.

We have already seen in Example 6.11 that this system has no solutions. Let us now try to
confirm this using Theorem 6.23. The augmented matrix [A|b] is given by

[A|b] =
[

1 1 1
1 1 0

]
.

Applying the row operation R1 ↔ R2 followed by R2 ← R2 − R1, we find the reduced row
echelon form of the augmented matrix: [

1 1 0
0 0 1

]
.

Hence ρ([A|b]) = 2. The reduced row echelon form of the coefficient matrix is the matrix[
1 1
0 0

]
,

which can be obtained from A by applying the operation R2 ← R2 − R1. Hence ρ(A) = 1.
Since ρ(A) ̸= ρ([A|b]), Theorem 6.23 implies that indeed the system we started with does
not have a solution.

In case A and [A|b] do have the same rank, we can use the theory of reduced row
echelon matrices, to describe a solution explicitly. Let us look at a concrete example
first.
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Example 6.25

Let us consider a system of three linear equations in four variables over R, whose augmented
matrix already is in reduced row echelon form:

x1 + 2 · x2 + 3 · x4 = 5
x3 + 4 · x4 = 6

0 = 0
.

We can see that in this case the coefficient matrix A and augmented matrix [A|b] are

A =

 1 2 0 3
0 0 1 4
0 0 0 0

 , respectively [A|b] =

 1 2 0 3 5
0 0 1 4 6
0 0 0 0 0

 .

Since both are already in reduced row echelon form, we can immediately determine the ranks
of these matrices and conclude that ρ(A) = ρ([A|b]) = 2. Theorem 6.23 does therefore not
apply, and we cannot conclude anything about the existence of solutions yet. However, a
solution is easily determined in the following way: first rewrite the equations in the following
way: {

x1 = 5− 2 · x2 − 3 · x4

x3 = 6− 4 · x4
.

Now we can choose x2 = v2 and x4 = v4 as we want for any v2, v4 ∈ R and then compute the
resulting values for x1 and x3. For example, choosing v2 = v4 = 0, we find the solution

v1

v2

v3

v4

 =


5
0
6
0

 .

Exactly the same approach can be used in general to find a solution to a system of linear
equations, provided that coefficient and augmented matrix have the same rank. The
result is the following:
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Theorem 6.26

Let a system of m linear equations in n variables over a field F be given. Denote by A
the coefficient matrix of the system and by [A|b] its augmented matrix and suppose
that these matrices have the same rank ρ. Moreover, assume that the pivots of the
reduced row echelon form of A are at the positions (1, j1), . . . , (ρ, jρ), and that the
top ρ entries of the last column of the reduced row echelon form of [A|b] are given
by b̂1, . . . , b̂ρ. Then the m-tuple (v1, . . . , vn) defined as

vj =

{
b̂ℓ if j = jℓ for some ℓ = 1, . . . , ρ,
0 otherwise.

is a possible solution to the system.

Proof. The idea of the proof is simply to generalize the approach used in Example 6.25.
First of all, we use the equations corresponding to the rows of the reduced row echelon
form of the augmented matrix [A|b] to express the variables xj with j ∈ {j1, . . . , jℓ}
in terms of the remaining n − ρ variables. Then putting all these remaining variables
xj, j ̸∈ {j1, . . . , jℓ} equal to zero, we find that xj = b̂ℓ for j = jℓ and ℓ = 1, . . . , ρ. Hence
the n-tuple (v1, . . . , vn) is indeed a solution to the system whose augmented matrix is
the reduced row echelon form of [A|b]. Now applying Theorem 6.17, we see that this
n-tuple is also a solution to the system we started with.

Theorem 6.26 does by no means state that the indicated solution is the only solution.
Indeed, we know from Theorem 6.10 that there can be more. Recall that a solution
to an inhomogeneous system of linear equations was called a particular solution. If
the system of linear equations in inhomogeneous, Theorem 6.26 therefore gives such a
particular solution, provided it exists.

Corollary 6.27

Let a system of m linear equations in n variables over a field F be given. Denote by
A the coefficient matrix of the system and by [A|b] its augmented matrix. Then the
system has no solution if and only if A and [A|b] do not have the same rank.

Proof. The “if” part is precisely Theorem 6.23. In other words, we have already seen in



Note 6 6.4 COMPUTING ALL SOLUTIONS TO SYSTEMS OF LINEAR EQUATIONS 25

Theorem 6.23 that if ρ(A) ̸= ρ([A|b]), then the system has no solutions. Conversely,
if ρ(A) = ρ([A|b]), then Theorem 6.26 implies that the system does have at least one
solution.

With Corollary 6.27 we can determine exactly if a given system of linear equations has
a solution. Moreover, using Theorem 6.26, we can determine at least one solution if
such solutions exist. Now recall that in Theorem 6.10, we have seen that in order to
find all solutions of an inhomogeneous system of linear equations, it is enough to find
all solutions of the corresponding homogeneous system of linear equations and one
particular solution of the inhomogeneous system. Therefore, what is left to do, is to
describe how one finds all solutions to a homogeneous system of linear equations. This
is precisely the aim of the next theorem, but let us look at an example first to get the
idea.

Example 6.28

Let us consider a system of three linear equations in four variables over R, whose augmented
matrix already is in reduced row echelon form:

x1 + 2 · x2 + 3 · x4 = 0
x3 + 4 · x4 = 0

0 = 0
.

This system is similar to the system of linear equation we studied in Example 6.25, but this
time it is homogeneous. In particular, the coefficient matrices of the system above and the
system from Example 6.25 are the same and as observed in Example 6.25, it is in reduced row
echelon form.

It is not hard to find all solutions to the system. Since the coefficient matrix of the system is
in reduced row echelon form with pivots in the first and third column, we can express x1 and
x3 in terms of x2 and x4. More concretely, we can rewrite the equations as{

x1 = −2 · x2 − 3 · x4

x3 = −4 · x4
.

Hence any solution (v1, v2, v3, v4) ∈ R4 to the system satisfies
v1

v2

v3

v4

 =


−2 · v2 − 3 · v4

v2

−4 · v4

v4

 = v2 ·


−2
1
0
0

+ v4 ·


−3
0
−4
1

 .

Therefore, we can think of v2, v4 ∈ R as parameters that we can choose arbitrarily, each choice
giving us a solution to the system of linear equations we started with. Changing notation
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from v2 to t1 and v4 to t2, we see that any solution to the system is of the form

t1 ·


−2
1
0
0

+ t2 ·


−3
0
−4
1

 (t1, t2 ∈ R)

Conversely, since a direct check shows that
−2
1
0
0

 and


−3
0
−4
1


are solution to the system, Theorem 6.9 implies that for any t1, t2 ∈ R, the expression

t1 ·


−2
1
0
0

+ t2 ·


−3
0
−4
1


is also a solution. Putting this together, we see that the solutions to the homogeneous system
of linear equations we started are precisely those (v1, v2, v3, v4) ∈ R4 such that

v1

v2

v3

v4

 = t1 ·


−2
1
0
0

+ t2 ·


−3
0
−4
1

 (t1, t2 ∈ R).

One calls such a description of the solutions, the general solution of the homogeneous system.
The solution set to the homogeneous system of linear equations

x1 + 2 · x2 + 3 · x4 = 0
x3 + 4 · x4 = 0

0 = 0

is precisely given by t1 ·


−2
1
0
0

+ t2 ·


−3
0
−4
1

 | t1, t2 ∈ R

 .

In this example, we started out with a homogeneous system of linear equations whose
coefficient matrix was in reduced row echelon form. This was the reason that we could



Note 6 6.4 COMPUTING ALL SOLUTIONS TO SYSTEMS OF LINEAR EQUATIONS 27

determine all solutions relatively fast. From the previous sections, we know however
that even if we start with a more complicated system, we can always use elementary
row operations to transform it in such a way that the resulting coefficient matrix is
in reduced echelon form. Basically, Example 6.28 describes how to find all solutions,
once the coefficient matrix of the system of linear equations is in reduced row echelon
form. Exactly the same ideas work for any homogeneous system of linear equations:
first simplify the system by bringing its coefficient matrix in reduced row echelon form,
then follow the procedure exemplified in Example 6.28. It is possible to describe the
outcome for the general case and for the sake of completeness we do so in the following
theorem. However, when asked to solve a homogeneous system of linear equations in
practice, it is often easier not to use this theorem, but instead to use a procedure similar
to the one in Example 6.28 directly.

Theorem 6.29

Let a homogeneous system of m linear equation in n variables over a field F be given.
Denote the coefficient matrix of this system by A and let Â denote the reduced row
echelon form of A. Further, suppose that Â has ρ pivots in columns j1, . . . , jρ, and
denote by

c1 =

 c11
...

cm1

 , . . . , cn−ρ =

 c1 n−ρ
...

cm n−ρ


the n− ρ columns of Â not containing a pivot. Finally, define

v1 =

 v11
...

vn1

 , . . . , vn−ρ =

 v1 n−ρ
...

vn n−ρ


by

vj i =


−cℓi if j = jℓ for some ℓ = 1, . . . , ρ,
1 if ci is the j-th column in Â,
0 otherwise.

Then the solution set of the given homogeneous system of linear equations is given
by t1 ·

 v11
...

vn1

+ · · ·+ tn−ρ ·

 v1 n−ρ
...

vn n−ρ

 | t1, . . . , tn−ρ ∈ F

 .
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Proof. We will not prove this theorem, but only indicate the idea of the proof. First of all
Theorem 6.17 is used to conclude that the homogeneous system with coefficient matrix
A has exactly the same solution set as the homogeneous system with coefficient matrix
Â. Then the same approach as in Example 6.28 is used to describe all solutions to the
homogeneous system with coefficient matrix Â.

The expression

t1 ·

 v11
...

vn1

+ · · ·+ tn−ρ ·

 v1 n−ρ
...

vn n−ρ

 (t1, . . . , tn−ρ ∈ F)

is called the general solution of the homogeneous system with coefficient matrix A. Look-
ing back at Example 6.28, we see that the general solution of the homogeneous system
of linear equations studied in that example was shown to be equal to

t1 ·


−2
1
0
0

+ t2 ·


−3
0
−4
1

 (t1, t2 ∈ R).

Corollary 6.30

Let a homogeneous system of m linear equation in n variables over a field F be given.
Denote the coefficient matrix of this system by A. Then the homogeneous system has
only the all-zero tuple (0, . . . , 0) ∈ Fn as solution if and only if ρ(A) = n.

Proof. Theorem 6.29 implies that if the rank of A is less than n, then there exists a
nonzero solution. Conversely, if the rank of A is equal to n, the number of parame-
ters ti in the description of the solution set in Theorem 6.29, is zero. This means that
only the all-zero tuple (0, . . . , 0) is a solution.

The status is now that we can determine all solutions to any homogeneous system of
linear equations (which we called the general solution of the homogeneous system), can
determine whether or not an inhomogeneous system has a solution, and find such a so-
lution (which we called a particular solution) if it does. Hence using Theorem 6.10, we
can in this case also determine a formula describing all solutions to an inhomogeneous
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system of linear equations: it is simply the sum of a particular solution and the general
solution of the corresponding homogeneous system. This sum is called the general solu-
tion of the inhomogeneous system. Therefore we have answered in a constructive way
all three questions posed at the end of Section 6.1.

Let us finish this section with an example, where we compute the general solution of an
inhomogeneous system of linear equations.

Example 6.31

Let us return to the inhomogeneous system of linear equations considered in Example 6.25:
x1 + 2 · x2 + 3 · x4 = 5

x3 + 4 · x4 = 6
0 = 0

.

We have computed a particular solution in Example 6.25 and the general solution of the
corresponding homogeneous system in Example 6.28. Using these previous calculations in
combination with Theorem 6.10, we conclude that the general solution of the inhomogeneous
system is given by: 

5
0
6
0

+ t1 ·


−2
1
0
0

+ t2 ·


−3
0
−4
1

 (t1, t2 ∈ R).

The solution set of the inhomogeneous system is therefore:


5
0
6
0

+ t1 ·


−2
1
0
0

+ t2 ·


−3
0
−4
1

 | t1, t2 ∈ R

 .

6.5 Uniqueness of the reduced row echelon form

Previously, we have stated that a given matrix A ∈ Fm×n has a unique reduced row
echelon form. Existence was shown in Theorem 6.21 and in this section we want to
show uniqueness. This section can be skipped and is only meant for the reader who
wants to see a proof of the uniqueness of the reduced row echelon form.
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Theorem 6.32

Let F be a field and A ∈ Fm×n a matrix. Suppose that A can be transformed using a
sequence of elementary row operations to a matrix B1 in reduced row echelon form,
but using another sequence of elementary row operations to a matrix B2 in reduced
row echelon form. Then B1 = B2.

Proof. From Theorem 6.17, we know that the homogeneous systems of linear equations
with coefficient matrices A, B1, and B2 all have exactly the same solutions. The idea of
the proof is to show that the homogeneous systems of linear equations with coefficient
matrices B1 and B2 only can have the same solutions if B1 = B2. Moreover, we use
induction on n, the number of columns.

Let us start with the induction basis. If n = 1, there are only two possible reduced row
echelon forms: the m× 1 matrices

0
0
...
0

 and


1
0
...
0

 .

The first can only be a reduced row echelon form of A, if A was the zero m× 1 matrix
to begin with. Performing any elementary row operation on the zero matrix, results in
the zero matrix again. Hence if B1 or B2 is the zero matrix, then A = B1 = B2, since
they are all equal to the zero matrix. Now suppose that B1 or B2 is equal to the second
possible m × 1 reduced row echelon matrix. If B1 ̸= B2, then at least one of them is
equal to the only other m× 1 reduced row echelon form matrix, namely the zero matrix.
But we have just seen that this would imply that both B1 and B2 are equal to the zero
matrix. This contradiction shows that if B1 or B2 is equal to the second m× 1 reduced
row echelon matrix, then B1 = B2.

We continue to the induction step. Assume n > 1 and that the theorem is true for n− 1.
For any m × n matrix A, let us denote by A|n−1, the m × (n − 1) matrix one obtains
by removing the final column of A. The induction hypothesis implies that A|n−1 has a
unique reduced row echelon form. Moreover, if B is an m × n matrix in reduced row
echelon form, then also the matrix B|n−1 is in reduced row echelon form. This implies
that if B1 and B2 are two possible reduced row echelon forms of A, then the induction
hypothesis implies that B1|n−1 = B2|n−1. In other words: the first n− 1 columns of B1
B2 are identical. Only the n-th (i.e., the last) columns may be distinct. Now denote by ρ

the number of pivots occurring in B1|n−1. If the n-th column of B1 contains a pivot, this
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column contains zeros only, except in the (ρ + 1)-th position, where it contains a one.
Hence any solution (v1, . . . , vn) ∈ Fn to the homogeneous system of linear equations
with coefficient matrix B1, satisfies vn = 0. Conversely, using Theorem 6.29, if the n-
th column of B1 does not contain a pivot, there exists a solution (v1, . . . , vn) such that
vn = 1. A similar reasoning applies to the last column of B2. Using Theorem 6.17, we can
however conclude that the homogeneous systems of linear equations with coefficient
matrices B1, B2, and A all have exactly the same solution sets. It follows that either a
pivot occurs in the n-th columns of both B1 and B2, or that no pivot occurs in the n-th
columns of both B1 and B2. In the first case, we have already seen that the n-th columns
are completely determined, implying that B1 = B2. In the second case, we can conclude
that there is exactly one solution to the homogeneous system of linear equations with
coefficient matrix A that has a zero in all variables corresponding to the columns not
containing pivots, except in the n-th column, where it has a one. Using Theorem 6.29,
one sees that the coefficients of this solution completely determine the n-th column of
a reduced row echelon form of A. We conclude that B1 = B2 also in the second case
where no pivot occurs in the n-th columns of both B1 and B2.
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