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Note 8

Determinants

8.1 Determinant of a square matrix

In this section, we will introduce the determinant of a square matrix. Determinants will
be useful when investigating if a given matrix is invertible, but will also become very
useful in later chapters. We start with a notational convention:

Definition 8.1

Let A = (aij)1≤i≤n,1≤j≤n ∈ Fn×n be a given square matrix. Then we define the matrix
A(i; j) ∈ F(n−1)×(n−1) as:

A(i; j) =



a11 . . . a1 j−1 a1 j+1 . . . a1n
...

...
...

...
ai−1 1 . . . ai−1 j−1 ai−1 j+1 . . . ai−1 n
ai+1 1 . . . ai+1 j−1 ai+1 j+1 . . . ai+1 n

...
...

...
...

an1 . . . an j−1 an j+1 . . . ann


.

In words: the matrix A(i; j) is obtained from A by deleting the i-th row and j-th column
of A. With this in place, we can define the determinant of a square matrix recursively as
follows:
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Definition 8.2

Let A ∈ Fn×n be a square matrix. Then we define

det(A) =

{
A if n = 1,

∑n
i=1(−1)i+1 · ai1 · det(A(i; 1)) if n ≥ 2.

Instead of using the summation symbol, one may also write:

det(A) = a11 · det(A(1; 1))− a21 · det(A(2; 1)) + · · ·+ (−1)n+1 · an1 · det(A(n; 1)).

Example 8.3

Let

A =

[
a11 a12

a21 a22

]
.

To compute the determinant of this matrix, we will use Definition 8.2. First of all, note that
A(1; 1) = a22 and A(2; 1) = a12. Therefore

det
([

a11 a12

a21 a22

])
= a11 · det(a22)− a21 · det(a12) = a11a22 − a21a12. (8-1)

When given the task to compute the determinant of a 2 × 2 matrix, this equation can be
practical.

Example 8.4

As in Example 7.21, let F = R and

A =

 1 2 3
4 5 6
5 7 9

 .

Compute the determinant of A.

Answer: First of all, note that

A(1; 1) =
[

5 6
7 9

]
, A(2; 1) =

[
2 3
7 9

]
, and A(3; 1) =

[
2 3
5 6

]
.
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Hence using Definition 8.2, we obtain that

det(A) = 1 · det
([

5 6
7 9

])
− 4 · det

([
2 3
7 9

])
+ 5 · det

([
2 3
5 6

])
.

Using equation (8-1), we can quickly compute the determinants of 2× 2 matrices. Then we
obtain that

det(A) = 1 · (45− 42)− 4 · (18− 21) + 5 · (12− 15) = 3 + 12− 15 = 0.

Later, we will have a few more techniques at our disposal for computing determinants
of matrices, but for now we consider one particular class of matrices. Given any square
matrix A = (aij)1≤i≤n;1≤j≤n, the entries a11, . . . , ann are called the diagonal entries of A.

Definition 8.5

A matrix A = Fn×n is called a diagonal matrix, if there exist λ1, . . . , λn ∈ F such that

A =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
... . . . . . . . . . ...
0 . . . 0 λn−1 0
0 . . . 0 0 λn

 .

In other words: a diagonal matrix is a square matrix all of whose entries are zeroes,
except possibly on its diagonal. For example, the identity matrix In mentioned in the
beginning of Section 7.3, is a diagonal matrix, with diagonal entries all equal to 1.

Proposition 8.6

Let A = Fn×n be a diagonal matrix with diagonal entries λ1, . . . , λn. Then

det(A) = λ1 · λ2 · · · · · λn.

In particular det(In) = 1.
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Proof. We show this using induction on n. Indeed, if n = 1, then A = λ1 and Definition
8.2 implies that det(A) = λ1. Now assume that n ≥ 2 and that the proposition holds
for diagonal matrices in F(n−1)×(n−1). Using Definition 8.2, we then see that:

det(A) = λ1 · det(A(1; 1))− 0 · det(A(2; 1)) + · · ·+ (−1)n+1 · 0 · det(A(n; 1))
= λ1 · det(A(1; 1))
= λ1 · λ2 · · · · · λn,

where in the last equality we used the induction hypothesis. The induction hypothesis
applies, since A(1; 1) is a diagonal matrix with diagonal entries λ2, . . . , λn. This com-
pletes the induction step. Using the induction principle, we conclude that the proposi-
tion is true. The particular case of the identity matrix now also follows, since then all
diagonal entries are equal to one.

We can in fact at this point already give a formula for the determinant of a larger class
of matrices called upper triangular matrices:

Definition 8.7

A matrix A = Fn×n is called an upper triangular matrix, if there exist λ1, . . . , λn ∈ F

and ai j ∈ F for 1 ≤ i < j ≤ n, such that

A =


λ1 a12 a13 . . . a1n
0 λ2 a23 . . . a2n
... . . . . . . . . . ...
0 . . . 0 λn−1 an−1 n
0 . . . 0 0 λn

 .

In words: an upper triangular matrix has all its nonzero entries above or on its diagonal.
In particular, all entries below the diagonal of an upper triangular matrix are zero.

Theorem 8.8

Let A = Fn×n be an upper triangular matrix with diagonal entries λ1, . . . , λn. Then

det(A) = λ1 · λ2 · · · · · λn.



Note 8 8.1 DETERMINANT OF A SQUARE MATRIX 5

Proof. The proof is very similar as the proof of Proposition 8.6 and left to the reader.

Another type of matrices, in the same spirit as upper triangular matrices, is the follow-
ing:

Definition 8.9

A matrix A = Fn×n is called an lower triangular matrix, if there exist λ1, . . . , λn ∈ F

and ai j ∈ F for 1 ≤ j < i ≤ n, such that

A =


λ1 0 0 . . . 0
a2 1 λ2 0 . . . 0

... . . . . . . . . . ...
an−1 1 . . . an−1 n−2 λn−1 0

an 1 . . . an n−2 an n−1 λn

 .

In words: a lower triangular matrix has all its nonzero entries below or on its diagonal.
In particular, all entries above the diagonal of a lower triangular matrix are zero. Also
here, we can find a formula for its determinant. Before showing that, we need a lemma
that can be useful in its own right.

Lemma 8.10

If a square matrix in Fn×n contains a zero row, its determinant is zero.

Proof. This can be shown using induction on n. Providing the details, is left to the
reader.

Theorem 8.11

Let A = Fn×n be a lower triangular matrix with diagonal entries λ1, . . . , λn. Then

det(A) = λ1 · · · · · λn.
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Proof. We show this using induction on n. Indeed, if n = 1, then A = λ1 and Def-
inition 8.2 implies that det(A) = λ1. Now assume that n ≥ 2 and that the propo-
sition holds for lower diagonal matrices in F(n−1)×(n−1). Now note that A(1; 1) is a
lower diagonal matrix with diagonal entries λ2, . . . , λn. Hence the induction hypothe-
sis implies that det(A(1; 1)) = λ2 · · · · · λn. The matrices A(2; 1), . . . , A(n; 1) all have
the zero row as first row. The reason for this is that the first row of A only has a
nonzero entry in its first position, but this position has been removed when construct-
ing the matrices A(2; 1), . . . , A(n; 1). By Lemma 8.10, we therefore have det(A(2; 1)) =
0, . . . , det(A(n; 1)) = 0.

Using Definition 8.2, we then see that:

det(A) = λ1 · det(A(1; 1))− a21 · det(A(2; 1)) + · · ·+ (−1)n+1 · an1 · det(A(n; 1))
= λ1 · det(A(1; 1))− a21 · 0 + · · ·+ (−1)n+1 · an1 · 0
= λ1 · det(A(1; 1))
= λ1 · λ2 · · · · · λn,

where in the last equality we used the induction hypothesis. This completes the induc-
tion step. Using the induction principle, we conclude that the theorem is true.

8.2 Determinants and elementary row operations

Using Definition 8.2 is not always the fastest way to compute the determinant of a
square matrix. When studying systems of linear equations, three types of elementary
row operations could be used to simplify a given system immensely. Motivated by this,
we now study the effect of these three types of elementary row operations on the value
of a determinant. The easiest to deal with is an elementary row operation of the form
Ri ← c · Ri. We start by proving a more general result.
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Theorem 8.12

Consider the following three matrices in Fn×n:

A =



− a1 −
...

− ai−1 −
− ai −
− ai+1 −

...
− an −


, B =



− a1 −
...

− ai−1 −
− bi −
− ai+1 −

...
− an −


, and C =



− a1 −
...

− ai−1 −
− c · ai + bi −
− ai+1 −

...
− an −


,

where c ∈ F. Then det(C) = c · det(A) + det(B).

Proof. We use induction on n. If n = 1, we have A = a for some a ∈ F, B = b for
some b ∈ F and C = c · a + b. Then according to Definition 8.2, we see that det(C) =
c · a + b = c · det(A) + det(B).

Now assume that n ≥ 2 and that the theorem holds for (n− 1)× (n− 1) matrices. We
know from Definition 8.2 that

det(C) =
n

∑
k=1

(−1)k+1 · ck1 · det(C(k; 1)).

Let us denote by ∑n
k=1;k ̸=i(−1)k+1 · ck1 · det(C(k; 1)) the summation one obtains by let-

ting k range from 1 to n, except that now the value i is skipped. Then we can write

det(C) =
n

∑
k=1;k ̸=i

(−1)k+1 · ck1 · det(C(k; 1)) + (−1)i+1 · ci1 · det(C(i; 1)).

For all k different from i, the induction hypothesis implies that det(C(k; 1)) = c ·det(A(k; 1))+
det(B(k; 1)). Further C(i; 1) = A(i; 1) = B(i; 1), since the i-th row is the only row in
which the matrices A, B and C differ. Now using that ci1 = c · ai1 + bi1 and ck1 = ak1 if
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k ̸= i, we see that

det(C) =
n

∑
k=1;k ̸=i

(−1)k+1 · ak1 · det(C(k; 1)) +

(−1)i+1 · (ai1 + bi1) · det(C(i; 1))

=
n

∑
k=1;k ̸=i

(−1)k+1 · ak1 · (c · det(A(k; 1)) + det(B(k; 1)))

+(−1)i+1 · c · ai1 · det(A(i; 1)) + (−1)i+1 · bi1 · det(B(i; 1))

=
n

∑
k=1;k ̸=i

c · (−1)k+1 · ak1 · det(A(k; 1)) + (−1)i+1 · c · ai1 · det(A(i; 1))

+
n

∑
k=1;k ̸=i

(−1)k+1 · bk1 · det(B(k; 1))) + (−1)i+1 · bi1 · det(B(i; 1))

= c · det(A) + det(B).

This concludes the induction step and hence the induction proof.

Corollary 8.13

Let A ∈ Fn×n be given and suppose that C is obtained from A by applying the
elementary row operation Ri ← c · Ri on A, for some i and some c ∈ F. Then
det(C) = c · det(A).

Proof. If we choose bi = 0 in Theorem 8.12, we find that det(C) = c · det(A) + det(B),
where B is a matrix whose i-th row is the zero row. Lemma 8.10, implies that det(B) = 0.
Hence the corollary follows.

Investigating the effect of the remaining two types of elementary row operation turns
out to be more elaborate. What turns out to happen is the following:

Applying Ri ↔ Rj on a square matrix, changes the sign of the determinant. (8-2)

Applying Ri ← Ri + c · Rj on a square matrix, does not affect the determinant. (8-3)
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Example 8.14

As in Example 7.21, let F = R and

A =

 1 2 3
4 5 6
5 7 9

 .

Compute the determinant of A using elementary row operations.

Answer: From Example 7.21 we can read off that:

A =

 1 2 3
4 5 6
5 7 9

 −→
R2 ← R2 − 4 · R1

 1 2 3
0 −3 −6
5 7 9


−→

R3 ← R3 − 5 · R1

 1 2 3
0 −3 −6
0 −3 −6

 −→
R3 ← R3 − R2

 1 2 3
0 −3 −6
0 0 0

 .

Using equation (8-3) three times, we may conclude that

det(A) = det

 1 2 3
0 −3 −6
0 0 0

 .

Now note that the matrix on the right-hand side is an upper triangular matrix. Hence using
Theorem 8.8, we obtain that

det(A) = det

 1 2 3
0 −3 −6
0 0 0

 = 1 · (−3) · 0 = 0.

In the rest of this section, we will prove the validity of equations (8-2) and (8-3). A
reader willing to accept their validity without proof can directly proceed to Section 8.3.
A reader who wants to read the proof of of equations (8-2) and (8-3) is invited to do so,
but on a first reading it may be best to read Section 8.3 first.

We start with two lemmas.
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Lemma 8.15

Assume that n ≥ 2 and let a square matrix A ∈ Fn×n be given. Further, denote by
B ∈ Fn×n a matrix obtained from A by interchanging two consecutive rows of A.
Then det(B) = −det(A).

Proof. We prove this using induction on n.

If n = 2, we have

A =

[
a11 a12
a21 a22

]
and B =

[
a21 a22
a11 a12

]
,

implying det(A) = a11 · a22 − a21 · a12 and det(B) = a21 · a12 − a11 · a22. Hence det(B) =
−det(A).

Now let n ≥ 3 and assume that the lemma holds for n − 1. Let us denote the two
rows of A that are interchanged by Ri and Ri+1. Then, we see that A(i; 1) = B(i + 1; 1)
and A(i + 1; 1) = B(i; 1). Further for k ̸= i and k ̸= i + 1, we have that B(k; 1) can
be obtained from A(k; 1) by interchanging two consecutive rows. Hence for such k,
we have det(B(i; 1)) = −det(A(i; 1)) from the induction hypothesis. Putting all this
together, we find:

det(B) =
n

∑
k=1;k ̸=i;k ̸=i+1

(−1)k+1 · ak 1 · det(B(k; 1))

+(−1)i+1 · ai+1 1 · det(B(i; 1)) + (−1)i+2 · ai 1 · det(B(i + 1; 1))

= −
n

∑
k=1;k ̸=i;k ̸=i+1

(−1)k+1 · ak 1 · det(A(k; 1))

+(−1)i+1 · ai+1 1 · det(A(i + 1; 1)) + (−1)i+2 · ai 1 · det(A(i; 1))

= −
n

∑
k=1

(−1)k+1 · ak 1 · det(A(k; 1))

= −det(A).

This concludes the induction step and hence the proof.

Lemma 8.16

Assume that n ≥ 2 and let a square matrix A ∈ Fn×n be given. Assume that two
consecutive rows of A are identical. Then det(A) = 0.



Note 8 8.2 DETERMINANTS AND ELEMENTARY ROW OPERATIONS 11

Proof. This can be shown following the same strategy as in the proof of Lemma 8.15

The above lemma is just a special case of a more general result:

Proposition 8.17

Assume that n ≥ 2 and let a square matrix A ∈ Fn×n be given. Assume that two
rows of A are identical. Then det(A) = 0.

Proof. If two consecutive rows of A are identical, Lemma 8.16 implies det(A) = 0.
Therefore we are left with the case that two rows of A are identical, but that these are
not consecutive. Now let us denote the two given identical rows of A by Ri and Rj, for
some i > j ≥ 1. We interchange rows Ri and Ri−1, thus moving the row Ri up in the
matrix. The effect on the determinant is a sign change using Lemma 8.15. In the new
matrix, the identical rows are now rows Rj and Ri−1. If these rows are consecutive, we
stop interchanging rows, but otherwise, we move the lowest of the two identical rows
up, one row at the time. Therefore, we end up with a matrix B with two consecutive
rows. Moreover, using Lemma 8.15 each time we interchange to consecutive rows, we
know that det(B) = ±det(A). On the other hand, det(B) = 0 by Lemma 8.16. Hence
we can conclude that det(A) = 0.

We now have all the ingredients needed to show the effect of interchanging two rows
on the determinant of a square matrix.

Theorem 8.18

Let a square matrix A ∈ Fn×n be given and denote by B ∈ Fn×n a matrix obtained
from A using an elementary operation of the form Ri ↔ Rj for some integers i < j.
Then det(B) = −det(A).
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Proof. Let us write

A =



− a1 −
...

− ai−1 −
− ai −
− ai+1 −

...
− aj−1 −
− aj −
− aj+1 −

...
− an −



and C =



− a1 −
...

− ai−1 −
− ai + aj −
− ai+1 −

...
− aj−1 −
− aj + ai −
− aj+1 −

...
− an −



.

Applying Theorem 8.12 on row i of C, we see that

det(C) = det





− a1 −
...

− ai−1 −
− ai −
− ai+1 −

...
− aj−1 −
− aj + ai −
− aj+1 −

...
− an −





+ det





− a1 −
...

− ai−1 −
− aj −
− ai+1 −

...
− aj−1 −
− aj + ai −
− aj+1 −

...
− an −




Now we apply Theorem 8.12 again, but this time for row j in the two determinants
on the right-hand side of this equation and use Proposition 8.17 afterwards. Then we
obtain that

det(C) = det(A) + det(B).

However, Proposition 8.17 implies that det(C) = 0, since rows i and j of C are identical.
Hence 0 = det(A) + det(B), which implies what we wanted to show.

Now that we know the effect of the elementary row operations Ri ← c · Ri and Ri ↔ Rj
on the determinant, let us also see what happens with the determinant when using an
elementary operations of the form Ri ← Ri + c · Rj.
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Theorem 8.19

Let A ∈ Fn×n be given and suppose that the matrix B is obtained from A by applying
the elementary row operation Ri ← Ri + c · Rj on A, for some distinct row indices
i, j, and c ∈ F. Then det(B) = det(A).

Proof. This follows from Theorem 8.12 and Proposition 8.17.

8.3 Alternative descriptions of the determinant

In our description of a determinant of a square matrix A ∈ Fn×n, the first column of
A played a special role. After all, in the recursive definition, we multiply entries from
the first column of A with the determinants of smaller matrices. These smaller matrices
were obtained from A by deleting the first column and some row. For this reason, one
sometimes says that one in Definition 8.2 computes the determinant by expanding it
along the first column. More precisely, one often refers to this as the expansion or Laplace
expansion of the determinant along the first column.

One can now ask if there is any reason why the first column is so special. The answer is:
it is not! It is possible to compute determinants by expansion along other columns and
in fact also by expansion along rows. More precisely, we have the following theorem:

Theorem 8.20

Let n ≥ 2 and A ∈ Fn×n be a square matrix. Then for any j between 1 and n:

det(A) =
n

∑
i=1

(−1)i+j · ai j · det(A(i; j)). (8-4)

Moreover, for any i between 1 and n:

det(A) =
n

∑
j=1

(−1)i+j · ai j · det(A(i; j)). (8-5)
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Proof. We will not prove this theorem, but the interested reader can find some remarks
at the end of this section explaining the main ideas behind the proof.

Note that for j = 1, equation (8-4) simply becomes the formula given for the determi-
nant given in Definition 8.2. Equation (8-4) describes the Laplace expansion of the de-
terminant along the j-th column, while equation (8-5) describes the Laplace expansion
of the determinant along the i-th row. These equations can also be expressed without
using the summation sign in the following way:

det(A) = (−1)1+j · a1j · det(A(1; j)) + (−1)2+j · a2j · det(A(2; j))+

· · ·+ (−1)n+j · anj · det(A(n; j)).

and

det(A) = (−1)i+1 · ai1 · det(A(i; 1)) + (−1)i+2 · ai2 · det(A(i; 2))+

· · ·+ (−1)i+n · ain · det(A(i; n)).

Example 8.21

As in Example 7.21, let F = R and

A =

 1 2 3
4 5 6
5 7 9

 .

Compute the determinant of A using Laplace expansion along the first row.

Answer: First of all, note that

A(1; 1) =
[

5 6
7 9

]
, A(1; 2) =

[
4 6
5 9

]
, and A(1; 3) =

[
4 5
5 7

]
.

Hence using Laplace expansion along the first row, we obtain that

det(A) = (−1)1+1 · 1 · det
([

5 6
7 9

])
+ (−1)1+2 · 2 · det

([
4 6
5 9

])
+

(−1)1+3 · 3 · det
([

4 5
5 7

])
.

Using equation (8-1), we can quickly compute the determinants of 2× 2 matrices. Then we
obtain that

det(A) = 1 · (45− 42)− 2 · (36− 30) + 3 · (28− 25) = 3− 12 + 9 = 0.
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Theorem 8.20 has a nice consequence involving transpose matrices.

Corollary 8.22

Let A ∈ Fn×n be given. Then det(A) = det(AT).

Proof. We use induction on n. If n = 1, A = AT, so certainly det(A) = det(AT). Now
assume n ≥ 2 and that the corollary holds for n− 1. Note that A(j; 1)T = AT(1; j), so
that using the induction hypothesis, we may use that det(AT(1; j)) = det(A(j; 1)T) =
det(A(j; 1)). Now using Laplace expansion of the determinant of AT along the first row,
we see that

det(AT) =
n

∑
j=1

(−1)1+j · (AT)1 j · det(AT(1; j))

=
n

∑
j=1

(−1)1+j · aj 1 · det(A(j; 1))

= det(A),

where in the last equality, we used Definition 8.2. This concludes the induction step and
thereby the proof.

Finally, one very important property of determinants that we want to mention here, is
that determinants behave well with respect to matrix multiplication:

Theorem 8.23

Let A, B ∈ Fn×n be given. Then det(A · B) = det(A) · det(B).

The interested reader can find a sketch of the proof at the end of this section, but this is
not required reading. This theorem looks innocent, but has a number of consequences
that all are quite important for us later on. We formulate them as a number of corollaries.

Corollary 8.24

Let A ∈ Fn×n be given. Then A has an inverse if and only if det(A) ̸= 0.



Note 8 8.3 ALTERNATIVE DESCRIPTIONS OF THE DETERMINANT 16

Proof. If A has an inverse A−1, then A ·A−1 = In. Applying Theorem 8.23, we see that
det(A) ·det(A−1) = det(In) = 1. For the last equality we used Proposition 8.6. But then
det(A) ̸= 0, since otherwise the product det(A) · det(A−1) would be zero.

Conversely, assume that det(A) ̸= 0. If we transform A using any sequence of elemen-
tary row operations to a matrix B in reduced row echelon form, then Corollary 8.13 and
Theorems 8.18, 8.19 imply that det(B) = d · det(A) for some nonzero constant d ∈ F.
Therefore det(B) ̸= 0. This means in particular that B does not contain a zero row, since
otherwise its determinant would be zero by Lemma 8.10. But then B = In, implying
that A has rank n. As observed in equation (7-10) and Corollary 7.25, this implies that
A has an inverse.

Corollary 8.25

Let A ∈ Fn×n be given. Then the columns of A are linearly independent if and only
if det(A) ̸= 0.

Proof. This follows by combining Theorem 7.8, the previous corollary, and Corollary
7.25.

Corollary 8.26

Let A ∈ Fn×n be given. Then det(A) ̸= 0 if and only if the homogeneous system of
linear equations with coefficient matrix A only has the zero vector as solution.

Proof. This follows by combining Corollaries 6.30, 7.25, and 8.24.

We will not prove Theorem 8.23 in detail, but the reader who would like to know more,
can read the remainder of this section and get a good impression on why this theorem
as well as Theorem 8.20 is true. The remainder of this section can be skipped on a first
reading. If a reader is willing to accept the statements of Theorems 8.20 and 8.23 without
proof, feel free to continue to the next chapter.

The key to understanding why Theorem 8.20 is true is the following:
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Lemma 8.27

Let f : Fn×n → F be a function that satisfies the following two conditions:

1. f (A) = 0 for all square matrices A ∈ Fn×n that have two identical rows.

2. For all matrices A, B and C as given in Theorem 8.12, it holds that f (C) =
c · f (A) + f (B).

Then f (A) = det(A) · f (In) for all A ∈ Fn×n.

Proof. We only sketch the proof: the two conditions that f satisfies, are enough to de-
duce exactly how the value of f changes, when a matrix A is changed using an elemen-
tary row operation. In fact, many of the proofs in Section 8.2 can be reused. The two
given conditions are also enough to deduce that f (A) = 0 for all A that have a zero
row. The outcome is then that f behaves exactly the same as the determinant under
elementary row operations and that both f and the determinant take the value zero for
matrices with a zero row.

Given any square matrix A and a sequence of elementary row operations that transform
A into its reduced row echelon form, say B, one can then compare the values of f and
the determinant under these elementary row operations. The outcome is that f (A) =
d · f (B) for some constant d ∈ F, but also det(A) = d · det(B) for the same constant
d. If A has rank strictly less than n, its reduced row echelon form B contains a zero
row. But then f (B) = 0 and det(B) = 0. If A has rank n, then B = In. Hence in this
case f (A) = d · f (In), while det(A) = d · det(In) = d · 1 = d. In all cases, we see that
f (A) = det(A) · f (In).

Note that the determinant as we defined it in Definition 8.2 satisfies the two conditions
from Lemma 8.27, see Proposition 8.17 and Theorem 8.12. To prove that Theorem 8.20
is valid, what one needs to do is to show that the function f one obtains by expanding a
determinant along some row or some column, always has the properties mentioned in
Lemma 8.27 and that f (In) = 1. To a high extent, this can be done similarly to how we
showed these things for the determinant defined in Definition 8.2.

Finally, let us give a sketch of the proof of Theorem 8.23:

Proof. To give a proof sketch of Theorem 8.23, we consider the function f : Fn×n → F

defined by f (A) = det(A · B) for some arbitrarily chosen B ∈ Fn×n. Using Proposition
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8.17 and Theorem 8.12, one first shows that f satisfies the conditions in Lemma 8.27.
One can then conclude that f (A) = det(A) · f (In) for all A ∈ Fn×n. But then det(A ·
B) = f (A) = det(A) · f (In) = det(A) · det(B). In the last equality, we used that In ·B =
B.
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