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Note 9

Vector spaces

9.1 Definition and examples of vector spaces

In the previous chapters, we have worked with linear combinations of vectors from Fn,
where F is a field (typically F = R or F = C). We have seen that elements of Fn can
be added and multiplied with scalars, that is to say, multiplied with elements from F.
It turns out to be a great advantage to take a more abstract point of view and describe
several essential properties right from the start. One says that one gives these properties
as axioms. This is similar in spirit to what we did when we defined a field. Also there,
several properties of the real and complex numbers were put as axioms for such a field.
In case of vectors and scalars, the result is the following:
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Definition 9.1

A vector space over a field F is a set V of elements called vectors, together with two op-
erations satisfying eight axioms. The first operation is called addition and denoted
by +. It takes as input two elements u, v ∈ V and returns a vector in V denoted by
u+ v. The second operation is called scalar multiplication and denoted by ·. It takes
as input an element of c ∈ F, in this context often called a scalar, and a vector u ∈ V
and returns a vector in V denoted by c · u. The eight axioms that should be satisfied
are:

1. u + (v + w) = (u + v) + w for all u, v, w ∈ V

2. u + v = v + u for all u, v ∈ V

3. There exists a vector 0 ∈ V called the zero vector, such that u + 0 = u for all
u ∈ V

4. For any u ∈ V there exists an element −u ∈ V called the additive inverse of u,
such that u + (−u) = 0

5. c · (d · u) = (c · d) · u for all u ∈ V and all c, d ∈ F

6. 1 · u = u for all u ∈ V

7. c · (u + v) = c · u + c · v for all u, v ∈ V and all c ∈ F

8. (c + d) · u = c · u + d · u for all u ∈ V and all c, d ∈ F

Note that in item 5 in the formula (c · d) · u, the first · (in c · d) denotes multiplication in
the field F, while the second · denotes the scalar multiplication on the vector space V.
Similarly in item 8, in the formula (c + d) · u = c · u + d · u, the first + denotes addition
in F, while the second + denotes addition in V.
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Example 9.2

Let us take V = Fn together with the addition and scalar product we have defined before in
equations (7-1) and (7-2). This gives an example of a vector space. To verify this, one should
check if the eight vector space axioms from Definition 9.1 are satisfied. Note that five of them
were mentioned already in Theorem 7.2. The zero vector in the third axiom is simply the zero
vector in Fn, while the additive inverse of a vector required in axiom four is given as:

−

 v1
...

vn

 =

 −v1
...

−vn


This only leaves the sixth axiom, but

1 ·

 v1
...

vn

 =

 1 · v1
...

1 · vn

 =

 v1
...

vn

 for all

 v1
...

vn

 ∈ Fn.

We see that Fn is a vector space over the field F.

A vector space over the field R is often called a real vector space. Similarly, a vector space
over the field C is often called a complex vector space. We have in the previous chapters
actually encountered examples of vector spaces already. Let us give a few.

Example 9.3

Consider the set C of complex numbers. If we take F = C and n = 1 in Example 9.2, we
obtain that we can see C as a vector space over itself. However, we can also see C as a vector
space over the real numbers R. Indeed, as +, we simply take addition of complex numbers.
Since we can multiply any two complex numbers, we can certainly multiply a real number
with a complex number. This gives us the needed scalar product. That all eight axioms from
Definition 9.1 are satisfied, can be deduced from Theorems 3.10 and 3.11.

Example 9.4

Very similarly as in Example 9.3, one can view the set of real numbers R as a vector space
over itself, but also as a vector space over the field of rational numbers Q (see Examples 2.4
and 6.2 for a description of the field Q).
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Example 9.5

Consider the set Fm×n of m × n matrices with entries in a field F. Using addition of matrices
as defined in Definition 7.14 and scalar multiplication defined by:

c ·

 a11 · · · a1n
...

...
am1 · · · amn

 =

 c · a11 · · · c · a1n
...

...
c · am1 · · · c · amn

 ,

the first two items of Theorem 7.15 state that the first two vector field axioms are satisfied.
The m × n matrix having zero entries only, plays the role of zero vector. All other axioms can
be checked as well, but we leave this to the reader.

Example 9.6

Consider the set C[Z] of polynomials in the variable Z with coefficients in C as defined in
Definition 4.1. On this set, we have as addition +, the usual addition of polynomials. Also,
we can multiply any two polynomials, so we certainly can multiply a constant polynomial
with another polynomial. This gives us a scalar product on C[Z]. We will not do so here, but
one can show that all eight axioms from Definition 9.1 are satisfied. Hence C[Z] is a vector
space over C.

Example 9.7

Consider the set F of all functions with domain R and codomain R. If f : R → R and r ∈ R

are given, one can define the function r · f : R → R as (r · f )(a) = r · f (a) for all a ∈ R. This
gives a scalar multiplication on F. Addition on F is defined in a similar way: if f : R → R

and g : R → R are given, the function ( f + g) : R → R is defined as ( f + g)(a) = f (a) + g(a)
for all a ∈ R. One can verify that this gives F the structure of a vector space over R. As zero
vector, one takes the zero function: 0 : R → R, satisfying a 7→ 0 for all a ∈ R.

In all examples we have given above, it holds that the product of the scalar 0 with any
vector is equal to the zero vector 0. However, none of the eight vector space axioms state
that 0 · u = 0 for all u ∈ V. Fortunately, the eight vector space axioms are chosen well:
one can deduce quite a lot from them, for example that the formula 0 · u = 0 indeed is
true for any vector space. We prove this and another intuitive formula in the following
lemma:
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Lemma 9.8

Let V be a vector space. Then

0 · u = 0 for all u ∈ V (9-1)

and
(−1) · u = −u for all u ∈ V. (9-2)

Proof. Using that 0 = 0+ 0 and vector space axiom eight, we see that 0 ·u = (0+ 0) ·u =
0 · u + 0 · u. Adding −(0 · u) on both sides and using vector space axioms four, one and
three, we get

0 = 0 · u + (−(0 · u))
= (0 · u + 0 · u) + (−(0 · u))
= 0 · u + (0 · u + (−(0 · u)))
= 0 · u + 0
= 0 · u.

This shows the first part. The second part follows similarly. Since 0 = (1 + (−1)), we
obtain that 0 · u = (1 + (−1)) · u = 1 · u + (−1) · u. The left-hand side of this equation
is equal to 0 by the first part of this lemma. Using this and vector space axiom six, we
see that 0 = u + (−1) · u. Hence (−1) · u = −u.

9.2 Basis of a vector space

Very similar to what we did in Section 7.1 for vectors in Fm, one can talk about a linear
combination of vectors in the setting of general vector spaces. Explicitly, given a vector
space V over a field F, vectors v1, . . . , vn ∈ V and scalars c1, . . . , cn ∈ F, an expression
of the form

c1 · v1 + · · ·+ cn · vn

is called a linear combination of the vectors v1, . . . , vn. Likewise, the notion of linear
(in)dependency of a finite sequence of vectors from Definition 7.4 generalizes directly
to the setting of vector spaces:
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Definition 9.9

Let V be a vector space over a field F. A sequence of vectors v1, . . . , vn ∈ V is
called linearly independent if and only if the equation c1 · v1 + · · · cn · vn = 0 with
c1, . . . , cn ∈ F only holds if c1 = · · · = cn = 0.
If the sequence of vectors v1, . . . , vn ∈ V is not linearly independent, one says that it
is linearly dependent.

Basically, the only difference with Definition 7.4 is that Fm has been replaced with V.
Also in the setting of general vector spaces, it is common to simply say that the vectors
v1, . . . , vn are linearly (in)dependent rather than saying that the sequence of vectors
v1, . . . , vn is linearly (in)dependent.

There is one complication concerning linear independence of vectors in general vector
spaces. In Definition 9.9, we only consider finitely many vectors. It turns out that some-
times, we would like to be able to state that the vectors from a possibly infinite set are
linearly independent. The following definition will allow us to do that:

Definition 9.10

Let V be a vector space over a field F. The vectors in a set S of vectors are called
linearly independent if and only if any finite sequence of distinct vectors v1, . . . , vn
from S is a linearly independent sequence of vectors.
If the vectors in S are not linearly independent, one says that they are linearly depen-
dent.

Basically, in Definition 9.10, the number of vectors in the set S we consider may be in-
finite, but when determining if they are linearly independent, we only consider finitely
many at the same time. Often we will work with finite sequences of vectors only, in
which case Definition 9.9 can be used.

In Examples 7.5 and 7.6 we have already given examples of linearly dependent and lin-
early independent vectors in the vector space R2. Let us consider some more examples.
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Example 9.11

In Example 9.3, we considered C as a vector space over R. In this example, we give examples
of linearly dependent and independent vectors. First of all, consider the elements 1 and i. To
determine if these are linearly independent, we consider the equation c1 · 1+ c2 · i = 0, where
c1, c2 ∈ R. The reason we only allow c1 and c2 to be real numbers, is that we in this example
consider C as a vector space over the field R. Hence in Definition 9.9, we have V = C and
F = R. In particular, the scalars only come from R by definition.

Returning to the equation c1 · 1+ c2 · i = 0, where c1, c2 ∈ R, we see that the complex number
c1 · 1 + c2 · i is in rectangular form. Since two complex numbers are equal if and only if they
have the same real and imaginary part, the equation c1 · 1 + c2 · i = 0 implies that c1 = 0 and
c2 = 0. We conclude that the complex numbers 1 and i are linearly independent over R.

Similarly, one can show that the complex numbers 2 and 1 + i are linearly independent. In-
deed, suppose that c1 · 2+ c2 · (1+ i) = 0, for some c1, c2 ∈ R. Considering real and imaginary
part, we see that this implies that 2c1 + c2 = 0 and c2 = 0, whence c1 = c2 = 0.

As a final example, let us consider a sequence of three complex numbers, for example 2, 1+ i
and 2 + 3i. Since −(1/2) · 2 + 3 · (1 + i) + (−1) · (2 + 3i) = 0, we see that the three complex
numbers 2, 1 + i, and 2 + 3i are linearly dependent over R.

Example 9.12

In Example 9.5, we viewed the set of matrices Fm×n as a vector space over F. For any pair
(i, j) satisfying 1 ≤ i ≤ m and 1 ≤ j ≤ n, define the matrix E(i,j) ∈ Fm×n to be the matrix
having zero entries, except for the entry (i, j), which is equal to one. For m = n = 2, we have
for example

E(1,1) =

[
1 0
0 0

]
, E(1,2) =

[
0 1
0 0

]
, E(2,1) =

[
0 0
1 0

]
, and E(2,2) =

[
0 0
0 1

]
.

Continuing with m = n = 2, we see that the matrices E(1,1), E(1,2), E(2,1), E(2,2) are linearly
independent over F. Indeed for any c1, c2, c3, c4 ∈ F, one has

c1 · E(1,1) + c2 · E(1,2) + c3 · E(2,1) + c4 · E(2,2) =

[
c1 c2

c3 c4

]
.

Hence c1 · E(1,1) + c2 · E(1,2) + c3 · E(2,1) + c4 · E(2,2) = 0 implies that c1 = c2 = c3 = c4 = 0.

For general m and n one can show similarly that the m × n matrices E(1,1), . . . , E(m,n) are lin-
early independent over F.
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Returning to m = n = 2, an example of a sequence of linearly dependent matrices is:[
−1 0
2 4

]
,
[

1 1
1 1

]
, and

[
5 4
2 0

]
,

since

1 ·
[
−1 0
2 4

]
− 4 ·

[
1 1
1 1

]
+

[
5 4
2 0

]
=

[
0 0
0 0

]
.

Example 9.13

Consider the complex vector space C[Z] from Example 9.6. Recall that two polynomials
p1(Z) = a0 + a1Z · · ·+ anZn of degree n and p2(Z) = b0 + b1Z · · ·+ bmZm of degree m are
equal if and only if n = m and ai = bi for all i. This implies in particular, that a polynomial
p(Z) = c0 + c/1Z · · ·+ cnZn is equal to the zero polynomial if and only if ci = 0 for all i. This
shows that the set {1, Z, Z2, . . . } is a set of linearly independent polynomials over C.

All these examples show that the notion of linear independence carries over well to the
setting of general vector spaces. With this in place, we come to a very important notion
in the theory of vector spaces.

Definition 9.14

Let V be a vector space over a field F. A set S of vectors is called a basis of V if the
two following conditions are met:

1. The vectors in S are linearly independent.

2. Any v ∈ V can be written as a linear combination of vectors in S.

An ordered basis (v1, v2, . . . ) is a list of vectors, such that the set {v1, v2, . . . } is a basis
of V.

It turns out that any vector space has a basis and we will freely use this fact. A reader
who has time and motivation for a bit of extra material about this is referred to Section
9.4, but this is not required reading. If a vector space has a finite basis, i.e., if the set
S containing the basis vectors, is finite, we can enumerate the elements in S and write
S = {v1, . . . , vn}. Then (v1, . . . , vn) is a finite ordered basis of V. Hence any vector space
with a finite basis has an ordered basis.
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Before giving examples, let us give one lemma and one more definition.

Lemma 9.15

Let V be a vector space over a field F that has a finite ordered basis (v1, . . . , vn).
Then any vector v ∈ V can be written in exactly one way as a linear combination of
the basis vectors.

Proof. The second part of Definition 9.14 guarantees that any vector v ∈ V can be
written as a linear combination of the basis vectors, say v = c1 · v1 + · · · cn · vn for
certain c1, . . . , cn ∈ F. What we need to show, is that this is the only way to write
v as a linear combination of the basis vectors v1, . . . , vn. Suppose therefore that v =
d1 · v1 + · · · dn · vn for certain d1, . . . , dn ∈ F. We wish to show that c1 = d1, . . . , cn = dn.
First of all, we have

c1 · v1 + · · · cn · vn = v = d1 · v1 + · · · dn · vn.

Therefore,
c1 · v1 + · · · cn · vn − (d1 · v1 + · · · dn · vn) = 0,

which in turn implies that

(c1 − d1) · v1 + · · · (cn − dn) · vn = 0.

However, since the vectors v1, . . . , vn are linearly independent (this follows from the
first part of Definition 9.14), we see that c1 − d1 = 0, . . . , cn − dn = 0. But then c1 =
d1, . . . , cn = dn, which is what we wanted to show.

This Lemma 9.15 motivates the following definition:
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Definition 9.16

Let V be a vector space over a field F that has a finite ordered basis β = (v1, . . . , vn).
If for v ∈ V, we have

v = c1 · v1 + · · · cn · vn,

then we define

[v]β =

 c1
...

cn

 ∈ Fn

to be the coordinate vector of v with respect to the ordered basis β. One also says that
[v]β is the β-coordinate vector of v.

The function sending a vector of V to its β-coordinate vector, has several nice properties.
Two of them will be useful later on.

Lemma 9.17

Let V be a vector space over a field F that has a finite ordered basis β. Then we have:

[u + v]β = [u]β + [v]β for all u, v ∈ V

and
[c · v]β = c · [v]β for all c ∈ F and v ∈ V.

Proof. We prove the first item only and leave the proof of the second one to the reader.
Let us say that the ordered basis β is given by v1, . . . , vn. If u = c1 · v1 + · · · cn · vn and
v = d1 · v1 + · · · dn · vn, then u + v = (c1 + d1) · v1 + · · · (cn + dn) · vn. Hence

[u + v]β =

 c1 + d1
...

cn + dn

 =

 c1
...

cn

+

 d1
...

dn

 = [u]β + [v]β.

Now we will use this lemma to prove a theorem involving linear independence of vec-
tors.
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Theorem 9.18

Let V be a vector space over a field F that has a finite ordered basis β consisting of n
vectors. Suppose we are given u1, . . . , uℓ ∈ V and c1, . . . , cℓ ∈ F. Then

c1 · u1 + · · ·+ cℓ · uℓ = 0 if and only if c1 · [u1]β + · · ·+ cℓ[·uℓ]β = 0.

In particular, the vectors u1, . . . , uℓ in V are linearly independent if and only if the
vectors [u1]β, . . . , [uℓ]β in Fn are linearly independent.

Proof. A vector v in V is the zero vector if and only if its β-coordinate vector is the zero
vector. Hence c1 · u1 + · · ·+ cℓ · uℓ = 0 if and only if [c1 · u1 + · · ·+ cℓ · uℓ]β = 0. Using
Lemma 9.17 repeatedly, we can also deduce that [c1 · u1 + · · ·+ cℓ · uℓ]β = c1 · [u1]β +
· · · + cℓ · [uℓ]β. Hence the first part of the theorem follows. The second part follows
directly from the first part.

This theorem basically reduces the question of linear (in)dependence of vectors in V to
a question of linear (in)dependence of vectors in Fn. However, for Fn, we already have
techniques at our disposal, notably Theorem 7.8.

Example 9.19

Let F = R and V = R2. We claim that the vectors

e1 =

[
1
0

]
and e2 =

[
0
1

]
form an ordered basis β for R2. Indeed, these vectors are linearly independent (the reader is
encouraged to check this), and any vector is a linear combination of e1 and e2, since[

v1

v2

]
= v1 ·

[
1
0

]
+ v2 ·

[
0
1

]
.

This means that in this case [v]β = v.

Now let γ be the sequence of vectors

u =

[
1
2

]
and v =

[
2
1

]
∈ R2.

We have seen in Example 7.6 that these two vectors are linearly independent. Further, one
can show that any vector in R2 can be written as a linear combination of u and v. Indeed,
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given v1, v2 ∈ R, the equation

c1 ·
[

1
2

]
+ c2 ·

[
2
1

]
=

[
v1

v2

]
,

gives rise to a system of two linear equations in the variables c1, c2. Solving this system, one
can show that for any v1, v2 ∈ R, we have

c1 = −v1

3
+

2v2

3
and c2 =

2v1

3
− v2

3

so that [
v1

v2

]
=

(
−v1

3
+

2v2

3

)
·
[

1
2

]
+

(
2v1

3
− v2

3

)
·
[

2
1

]
.

This means that γ = (u, v) is an ordered basis of R2. Moreover, from the above we see that[
v1

v2

]
γ

=

[
−v1/3 + 2v2/3
2v1/3 − v2/3

]
.

This first part of Example 9.19 can be expanded further: as in Section 7.3, let us denote
the i-th column of the identity matrix In ∈ Fn×n by ei for i = 1, . . . , n. In other words:
the vector ei has 1 as its i-th coordinate and zeroes everywhere else. These vectors form
an ordered basis (e1, . . . , en) of the vector space Fn called the standard (ordered) basis. For
the sake of completeness, let us show that they form an ordered basis:

Proposition 9.20

The vectors e1, e2, . . . , en form an ordered basis of the vector space Fn over F.

Proof. According to Definition 9.14, we need to check two things:

1. The vectors e1, e2, . . . , en are linearly independent.

2. Any vector in Fn can be written as a linear combination of e1, e2, . . . , en.

The first item follows from the observation that

c1 · e1 + c2 · e2 + · · ·+ cn · en =

 c1
...

cn

 .
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Indeed, this equation implies that if a linear combination is equal to the zero vector in
Fn, then all scalars c1, . . . , cn are zero. The second item follows, since if v = (v1, . . . , vn) ∈
Fn is given, then

v =

 v1
...

vn

 = v1 · e1 + v2 · e2 + · · ·+ vn · en.

Similarly as in Example 9.19, if β is the standard ordered basis of Fn, then [v]β = v for
all v ∈ Fn. Note though that just as in Example 9.19, the vector space Fn has many more
possible ordered bases. Now let us continue with giving examples of bases of vector
spaces.

Example 9.21

Continuing Examples 9.3 and 9.11, we know that the complex numbers 1 and i are linearly
independent over R. They form an ordered basis (1, i), which we denote by β, since any
complex number is a linear combination of 1 and i over the real numbers. More specifically,
for any a, b ∈ R, we have a + bi = a · 1 + b · i. Therefore, for a, b ∈ R, we have

[a + bi]β =

[
a
b

]
∈ R2.

Hence [a + bi]β is equal to the rectangular coordinates of the complex number a + bi.

There are many more possible bases (and hence ordered bases) for C when viewed as vector
space over R. For example, (2, 1 + i) is a possible ordered basis. Indeed, we have already
seen in Example 9.11 that the complex numbers 2 and 1 + i are linearly independent over
R. Also any complex number can be written as a linear combination with coefficients in R

of 2 and 1 + i. To see this, we need to check that for a given complex number a + bi, where
a, b ∈ R, the equation a + bi = c1 · 2 + c2 · (1 + i) has a solution c1, c2 ∈ R. Considering real
and imaginary parts, we see that a = 2c1 + c2 and b = c2. Hence we have as solution c2 = b
and c1 = (a − c2)/2 = (a − b)/2. Denoting the ordered basis (2, 1 + i) by γ, we have

[a + bi]γ =

[
(a − b)/2

b

]
∈ R2.
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Example 9.22

Continuing Examples 9.5 and 9.12, we can find an ordered basis β of the vector space Fm×n

over F. This ordered basis is (E(1,1), . . . , E(m,n)). We have already seen that the matrices
E(1,1), . . . , E(m,n) are linearly independent, while any matrix A = (aij)1≤i≤m;1≤j≤n can be writ-
ten as a linear combination of them, namely A = ∑m

i=1 ∑n
j=1 aijE(i,j).

Specifically for m = n = 2, the matrices E(1,1), E(1,2), E(2,1), E(2,2) form an ordered basis β =

(E(1,1), E(1,2), E(2,1), E(2,2)) and we have

[
a11 a12

a21 a22

]
β

=


a11

a12

a21

a22

 .

Example 9.23

In this example, we again consider the complex vector space C[Z] from Examples 9.6 and
9.13. From these examples, we already know that the set {1, Z, Z2, . . . } is a set of linearly
independent polynomials over C. However, by definition of polynomials, any polynomial
is a linear combination over C of finitely many elements from this set. Therefore the set
{1, Z, Z2, . . . } is in fact a basis of the complex vector space C[Z]. This is an example of a
vector space having an infinite basis.

It turns out that for a given vector space V over a field F, the number of vectors in a
basis of V is always the same. Later in this section, we will prove this in the special case
where the number of vectors in a basis is finite. In general, the number of elements in
a basis of V is called the dimension of the vector space V. A common notation for the
dimension of a vector space V is: dim(V) or just dim V. If one wants to make clear over
which field F the vector space is defined, one writes dimF(V) or dimF V. If the number
of vectors in a basis is finite, one says that V has finite dimension, otherwise one says
that V has infinite dimension, which can also be expressed in a formula as: dim V = ∞.

Example 9.24

Let us compute the dimensions of various examples of vector spaces that we have encoun-
tered so far. First of all from Example 9.19, we see that dimR(R

2) = 2. Much more generally
one has dimF(F

n) = n, since a possible basis of Fn is formed by the n vectors e1, . . . , en.
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A special case of the above is when C is viewed as a vector space over itself. Then it has di-
mension one: dimC(C) = 1 (a possible basis is formed by the complex number 1). However,
if C is viewed as a vector space over R, a basis is given by {1, i} as we have seen in Example
9.21. Hence dimR(C) = 2.

The vector space of m × n matrices Fm×n has a basis consisting of the mn matrices E(i,j) with
1 ≤ i ≤ m and 1 ≤ j ≤ n, as we have seen in Example 9.22. Hence dimF(F

m×n) = mn.

We have seen in Example 9.13 that the complex vector space C[Z] has a basis with infinitely
many elements, namely {1, Z, Z2, . . . }. Hence dimC(C[Z]) = ∞.

Theorem 9.25

If V has a finite basis consisting of n vectors, any other set of linearly independent
vectors in V has at most n elements.

Proof. Let us denote the basis vectors by v1, . . . , vn and denote the resulting ordered
basis by β. We will prove the theorem by contradiction. Assume therefore that there
exists a set of at least n + 1 linearly independent vectors, say w1, . . . , wn+1. Since β is an
ordered basis, we can find scalars aij ∈ F such that

wj = a1jv1 + · · ·+ anjvn for j = 1, . . . , n + 1.

Now let A = (aij) ∈ Fn×(n+1) be the matrix with entries aij. Note that the j-th col-
umn in A is equal to [wj]β. Since A has n rows, its rank ρ(A) is at most n. Since A
has n + 1 columns, this implies that ρ(A) < n + 1. Then by Corollary 6.30, we see
that the homogeneous system with coefficient matrix A has nonzero solutions. Let
(c1, . . . , cn+1) ∈ Fn+1 be such a nonzero solution. Then we have

c1 ·

 a11
...

an1

+ · · ·+ cn+1 ·

 a1 n+1
...

an n+1

 = A ·

 c1
...

cn+1

 =

 0
...
0

 .

Now recall that the j-th column in A is equal to [wj]β. This means that we have c1 ·
[w1]β + cn+1 · [wn+1]β = 0. Since from Lemma 9.17 one can deduce that [c1 · w1 + · · ·+
cn+1 · wn+1]β = c1 · [w1]β + cn+1 · [wn+1]β, we may conclude that [c1 · w1 + · · ·+ cn+1 ·
wn+1]β = 0. Hence c1 · w1 + · · ·+ cn+1 · wn+1 = 0. Since (c1, . . . , cn+1) was not the zero
vector, we conclude that the vectors w1, . . . , wn+1 are not linearly independent after all.
This contradiction shows that the assumption that there exists sets with at least n + 1
linearly independent vectors was wrong. Hence the theorem is true.
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Corollary 9.26

If V has a finite basis consisting of n vectors, any other basis for V contains precisely
n vectors as well.

Proof. Let S be a basis of V consisting of n vectors and T any other basis. Since the
vectors T are linearly independent, Theorem 9.25 implies that the number of vectors in
T is at most n. Let us denote by m, the number of vectors in T. What we have just shown
is that m ≤ n. Now applying Theorem 9.25 again, but now taking T as a basis, we can
conclude that the number of elements in S is at most m, that is: n ≤ m. Combining the
inequalities m ≤ n and n ≤ m, we conclude that n = m, which is what we wanted to
show.

This corollary justifies the definition of dimension of a vector space V as the number of
basis vectors in the finite dimensional case: no matter which basis of V you pick, it will
contain precisely the same number of vectors. As mentioned before, the basis vectors
themselves typically will be different when comparing two possible bases. In fact, for
finite dimensional vector spaces, we can characterize all possible bases:

Theorem 9.27

Let V be a vector space over a field F of dimension n. Then any set of n linearly
independent vectors in V is a basis for V.

Proof. Let us denote the vectors in some basis of V as v1, . . . , vn and let us write β for the
corresponding ordered basis. Further, let w1, . . . , wn be n linearly independent vectors
in V. To show that these form a basis, all we need to check is item 2 in Definition 9.14.
That is to say, we need to show that any v ∈ V can be written as a linear combination of
w1, . . . , wn. First of all, since β is a basis, we can find aij ∈ F such that

wj = a1j · v1 + · · ·+ anj · vn for j = 1, . . . , n,

or equivalently using the summation symbol:

wj =
n

∑
i=1

aij · vi for j = 1, . . . , n. (9-3)
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Now let A = (aij) ∈ Fn×n be the matrix with entries aij. As in the proof of Theorem 9.25,
note that the j-th column in A is equal to [wj]β. We claim that these columns are linearly
independent vectors in Fn. To see why, suppose that c1 · [w1]β + cn · [wn]β = 0 for
certain c1, . . . , cn ∈ F. Then [c1 · w1 + · · ·+ cn · wn]β = 0, implying that c1 · w1 + · · ·+
cn · wn = 0. Using that the vectors w1, . . . , wn are linearly independent, we conclude
that c1 = 0, . . . , cn = 0, which is what we wanted to show to prove our claim. Now
using Theorem 7.8 and Corollary 7.25, we conclude that the matrix A has an inverse
matrix A−1.

Now let us return to what we want to show: v ∈ V can be written as a linear combi-
nation of w1, . . . , wn. Since v is a linear combination of the basis vectors v1, . . . , vn, it
is enough to show that each of the basis vectors themselves can be written as a linear
combination of w1, . . . , wn. Let us write A−1 = (cij)1≤i≤n;1≤j≤n. We claim that:

vj = c1j · w1 + ·+ cnj · wn for j = 1, . . . , n.

Equivalently, using the summation symbol, we claim that:

vj =
n

∑
k=1

ckj · wk for k = 1, . . . , n.

To show the claim, first we use equation (9-3) to see that:

n

∑
k=1

ckj · wk =
n

∑
k=1

ckj ·
(

n

∑
i=1

aik · vi

)

=
n

∑
k=1

n

∑
i=1

ckj · aik · vi

=
n

∑
k=1

n

∑
i=1

aik · ckj · vi

=
n

∑
i=1

n

∑
k=1

aik · ckj · vi

=
n

∑
i=1

(
n

∑
k=1

aik · ckj

)
· vi.

Now note that the expression ∑n
k=1 aik · ckj is the (i, j)-th entry of the matrix product

A · A−1. However, since A · A−1 = In, we see that ∑n
k=1 aik · ckj = 1 if i = j and ∑n

k=1 aik ·
ckj = 0 otherwise. Hence we can conclude that ∑n

k=1 ckj · wk = vj, which is exactly what
we wanted to show.
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9.3 Subspaces of a vector space

Given a vector space V over some field F, it can happen that a subset W of V is closed
under the scalar multiplication and the vector addition as defined on V. The word
“closed” is just a way of saying that if v ∈ W and c ∈ F, then c · v ∈ W and if u, v ∈ W,
then u + v ∈ W. Since V is a vector space, we always have c · v ∈ V and u + v ∈ V, but
if W is closed under the scalar multiplication and addition, the vectors c · v and u + v
end up in W again. Let us consider two examples of this:

Example 9.28

Let us consider the complex vector space C2 and consider the subset W = {(z, 2 · z) | z ∈ C}.
Then adding two elements of W yields another element of W, since (z, 2 · z)+ (w, 2 ·w) = (z+
w, 2 · (z + w)) for all z, w ∈ C. Also multiplying an element from W with a scalar c ∈ C yields
an element of W, since c · (z, 2 · z) = (c · z, 2 · (c · z)). In fact W is a vector space using this
scalar multiplication and addition. For example, one has (0, 0) ∈ W, since (0, 0) = (0, 2 · 0).
Also −(z, 2 · z) = ((−z), 2 · (−z)) for any z ∈ C, which shows that if v ∈ W, then also
−v ∈ W. The reader is encouraged to check the remaining axioms of a vector space. Note
that dimC(W) = 1 (a possible basis is given by {(1, 2)}).

Example 9.29

Consider the vector space R2×2 of 2 by 2 matrices with coefficients in R. As we have seen,
this is a real vector space of dimension four. Now let D be the subset of R2×2 consisting of all
diagonal matrices, that is:

D =

{[
λ1 0
0 λ2

]}
.

Then the set D is closed under scalar multiplication and matrix addition. What this means is
that if A, B ∈ D and c ∈ F, then c ·A ∈ D and A+B ∈ D. Let us check this. If A has diagonal
elements λ1 and λ2 and B has diagonal elements µ1 and µ2, then:

c · A = c ·
[

λ1 0
0 λ2

]
=

[
c · λ1 0

0 c · λ2

]
∈ D,

and

A + B =

[
λ1 0
0 λ2

]
+

[
µ1 0
0 µ2

]
=

[
λ1 + µ1 0

0 λ2 + µ2

]
∈ D

One can check that D is in fact a real vector space of dimension two: a possible ordered basis
is (E(1,1), E(2,2)).
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To capture these type of examples, we have the following:

Definition 9.30

Let V be a vector space over a field F. A subspace of V is a subset W of V that is a
vector space over F under the scalar multiplication and vector addition defined on
V.

In other words, if W ⊆ V is closed under the scalar multiplication and vector addition
that V has, W “inherits” these operations. If W with these operations satisfies all vector
space axioms from Definition 9.1, it is called a subspace of W. Any vector space V has
at least two subspace: V itself can be seen as a subspace, and also the subspace {0}
containing only the zero vector of V. In general, V has many more subspaces. In all
cases, however, one can say the following about the dimension of a subspace:

Lemma 9.31

Let V be a vector space over a field F of dimension n and W a subspace of V. Then
dim W ≤ n.

Proof. Since V has a basis with n vectors, and W has a basis with dim W vectors. The
basis vectors of W form a sequence of dim W linearly independent vectors. Hence The-
orem 9.25 implies that dim W ≤ n.

Since V already satisfies all vector space axioms, it turns out not to be necessary to
check them all when investigating if a subset W is a subspace. More precisely, we have
the following lemma:

Lemma 9.32

Let V be a vector space over F and W a nonempty subset of V. Then W is a subspace
of V if the following is satisfied:

for all u, v ∈ W and all c ∈ F it holds that u + c · v ∈ W. (9-4)
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Proof. First let us show that W is closed under the scalar multiplication and vector ad-
dition of V. First of all, since W is not empty, it contains at least one vector, say w.
Then choosing u = w and v = w in equation (9-4), we can conclude that the vector
w + (−1) · w is also in W. Using for example equation (9-2), this implies that 0 ∈ W.
Now that we know this, we can apply equation (9-4) again, but now with u = 0 and
v ∈ W chosen arbitrarily. We can hence conclude that for arbitrary v ∈ W, also c · v is
in W. This shows that W is closed under scalar multiplication. Applying equation (9-4)
for arbitrary u, v ∈ W and c = 1, we conclude that u + v is in W. Hence W is closed
under vector addition.

Now let us show that W is a vector space by considering the eight vector space axioms
from Definition 9.1. Items 1, 2, 5, 6, 7, and 8 actually hold for all vectors in V and
therefore certainly for all vectors in a subset of V. Therefore, all that remains to be
checked is that items 3 and 4 are satisfied. Item 3 is fulfilled, since we already have
shown that equation (9-4) implies that 0 ∈ W. As for item 4, if v ∈ W, then (−1) · v ∈ W,
since W is closed under scalar multiplication. But by equation (9-2), (−1) · v = −v, so
that indeed the additive inverse −v is in W, for all v in W.

Example 9.33

Using Lemma 9.32, it is not hard to show that the subsets W and D from Examples 9.28 and
9.29 are subspaces. The reader is encouraged to check that the condition in equation (9-4) is
satisfied for these examples.

Example 9.34

Let C∞ be the set of all infinitely differentiable functions f : R → R. It is out of scope of
these notes to define very precisely what an infinitely differentiable function is, but roughly
speaking this means the following: if for all x ∈ R the limit lima→0( f (x + a) − f (x))/a
exists, we can define the derivative of f , denoted by f ′, to be the function f ′ : R → R with
x 7→ lima→0( f (x + a) − f (x))/a. An infinitely differentiable function f : R → R has the
property that one can keep on differentiating it as often as one wants. In particular, not only
its derivative f ′ exists, but also the derivative of f ′ (denoted by f ′′ or f (2)), the derivative of
f ′′ (denoted by f ′′′ or f (3)), and so on. More generally for any positive integer n, one denotes
with f (n) the n-th derivative of f . More precisely, one recursively defines the n-th derivative
as follows:

f (n) =

{
f if n = 0,

( f (n−1))′ if n > 0.

The set C∞ is a subspace of the vector space F from Example 9.7. This amounts to showing



Note 9 9.3 SUBSPACES OF A VECTOR SPACE 21

that if f , g ∈ C∞ and c ∈ R, then also f + c · g ∈ C∞. In fact one can show inductively that
( f + c · g)(n) = f (n) + c · g(n) for any n ∈ Z≥0. In particular, f + c · g is infinitely differentiable,
which is what we needed to show.

There is one specific way to construct a subspace, which we will get in to now.

Definition 9.35

Let V be a vector space over F and S a set of vectors from V. Then the span of S,
denotes by Span(S) is the set of all possible linear combinations of vectors from S.
In particular, if S = {v1, . . . , vn}, then

Span(S) = {c1 · v1 + · · · cn · vn | c1, . . . , cn ∈ F}.

It is customary to define Span(∅) = {0}. As a consequence one also says that the empty
set ∅ is a basis for the vector space {0}. One can verify that for any subset S ⊆ V, the
set Span(S) is in fact a subspace of V, using for example Lemma 9.32. If W is a given
subspace of a vector space V and W = Span(S), one says that the vectors in S span W.
One also says in this situation that W is spanned by the vectors in S. The vectors in a
basis of W will certainly span W, but in general a set of vectors spanning W need not be
linearly independent.

Example 9.36

Consider the real vector space V = R3 and let

v1 =

 1
2
3

 , v2 =

 4
5
6

 , and v3 =

 0
3
6

 .

Question: Find a basis of the subspace W spanned by the three vectors v1, v2, v3.

Answer:

A first, but unfortunately wrong, guess could be that the three vectors v1, v2 and v3 them-
selves form a basis. Certainly any vector in W can be written as a linear combination of v1, v2

and v3. This is a direct consequence of the Definition 9.35 of the span. However, in order to
be a basis, the three vectors v1, v2, v3 would have to be linearly independent as well. It turns
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out they are not. Using Theorem 7.8 this can be determined by calculating the reduced row
echelon form of the 3 × 3 matrix A with columns v1, v2 and v3. We omit the details of this
calculation, but instead encourage the reader to verify that this reduced row echelon form is: 1 0 4

0 1 −1
0 0 0

 .

This shows that the three vectors v1, v2 and v3 are linearly dependent, but at the same time
that the first two of them are linearly independent (compare to Example 7.9, where a similar
approach was used for three vectors in C3). We can conclude that v3 can be expressed as a
linear combination of v1 and v2. This in turns implies that the two vectors v1 and v2 span
exactly the same subspace of R3 as the three vectors v1, v2 and v3. Hence {v1, v2} is a basis
of W.

We have already fully answered the question, but suppose that we would like to see explicitly
how to express v3 as a linear combination of v1 and v2. To do this, we need to find a solution to
the homogeneous system of linear equations with coefficient matrix A of the form (c1, c2, 1).
Looking at the reduced row echelon form of A, we see that (−4, 1, 1) is such a solution. Hence
(−4) · v1 + 1 · v2 + v3 = 0, which implies that v3 = 4 · v1 − v2.

As we saw in the previous example, saying that a subspace is spanned by certain vec-
tors, does not mean that these vectors are linearly independent. The procedure we used
in Example 9.36 to find a basis can be generalized. Let us do that in the following theo-
rem:

Theorem 9.37

Let a subspace W of the vector space Fn be spanned by vectors u1, . . . , uℓ. Further
suppose that the reduced row echelon form of the matrix with columns u1, . . . , uℓ

has pivots precisely in columns j1, . . . , jρ. Then {uj1 , . . . , ujρ} is a basis of W.

Proof. First of all, let us denote by A the matrix with columns u1, . . . , uℓ and by B the
reduced row echelon form of A. By definition of the reduced row echelon form of a ma-
trix, the columns of B with column indices i1, . . . , iρ are the first ρ standard basis vectors
e1, . . . , eρ. In particular, they are linearly independent. We claim that this implies that
the columns of B with column indices i1, . . . , iρ are also linearly independent. Indeed,
if cj1 · uj1 + · · · + cjρ · ujρ = 0, then the tuple (v1, . . . , vℓ) ∈ Fℓ defined by vj = cj if
j ∈ {j1, . . . , jρ} and vj = 0 otherwise, is a solution to the homogeneous system of linear
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equations with coefficient matrix A. However, we know that any such solution is also
a solution to the homogeneous system with coefficient matrix B. Since we already ob-
served that the columns of B with column indices i1, . . . , iρ are linearly independent, we
conclude that necessarily cj1 = 0, . . . , cjρ = 0. This shows that the vectors {uj1 , . . . , ujρ}
are linearly independent.

Now choose any column uj of A, where j ̸∈ {j1, . . . , jρ}. Again by definition of the
reduced row echelon form, the j-th column of B has zeroes for its last n − ρ entries.
Hence it can be expressed as a linear combination of e1, . . . , eρ, which are just columns
j1, . . . , jℓ of B. This means that the homogeneous system with coefficient matrix B has a
solution (v1, . . . , vℓ) such that vj = 1 and vk = 0 for all k ̸∈ {j, j1, . . . , jρ}. Now using that
this is also a solution to the homogeneous system of linear equations with coefficient
matrix A, we find that the j-th column of A can be expressed as a linear combination
of columns j1, . . . , jρ. This proves that the span of u1, . . . , uℓ is the same as the span of
{uj1 , . . . , ujρ}.

Combining all the above, we conclude that {uj1 , . . . , ujρ} is a basis of W.

Looking back at Theorem 6.29, we see that in that theorem the solution set to a homo-
geneous system of linear equations was described exactly as the span of n − ρ vectors.
In this case these vectors actually form a basis of the solution set and in particular they
are linearly independent. Let us show this now.

Corollary 9.38

Let a homogeneous system of m linear equation in n variables over a field F be
given. Denote the coefficient matrix of this system by A and assume that this matrix
has rank ρ. The n − ρ vectors v1, . . . , vn−ρ indicated in Theorem 6.29 form a basis
of the solution set to the homogeneous system of linear equations with coefficient
matrix A.

Proof. Proof sketch: we use that same notation for the vectors ci and the matrix Â as
in Theorem 6.29. Looking back at the way the vector vi was defined in Theorem 6.29,
one can see that vi has a 1 in the coordinate j, where j satisfies that ci is the j-th column
in Â. Similarly, one sees that vi has coefficients equal to 0 afterwards, since ci contains
zeroes only after its ith coefficient. Hence the matrix with columns v1, . . . , vn−ρ is in row
echelon form. This implies that the corresponding matrix in reduced row echelon form
has pivots in each column. Theorem 9.37 then implies that {v1, . . . , vn−ρ} is a basis.
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Corollary 9.39

Let V be a vector space over a field F of finite dimension n with ordered basis β and
let u1, . . . , uℓ be vectors in V. Further suppose that the reduced row echelon form
of the matrix with columns [u1]β, . . . , [uℓ]β has pivots precisely in columns j1, . . . , jρ.
Then a basis of Span(u1, . . . , uℓ) is given by {uj1 , . . . , ujρ}.

Proof. We give a sketch of the proof: first of all, we see from Theorem 9.37 that a basis
of the subspace of Fn generated by [u1]β, . . . , [uℓ]β is given by {[uj1 ]β, . . . , [ujρ ]β}. Now
Theorem 9.18 can be used to see that {uj1 , . . . , ujρ} is a basis of Span(u1, . . . , uℓ).

9.4 Extra: why does any vector space have a basis?

This section is not required reading and can be skipped. It is meant as extra material for
a student who has the time and motivation for it.

In the previous sections, we have simply used the fact that any vector space V has a
basis. To prove this, we need to study the set I(V) consisting of all subsets of V whose
elements are linearly independent vectors. For example ∅ ∈ I(V), since the empty set
contains no vectors and therefore cannot contain linearly dependent vectors. If V ̸= {0}
any subset of the form {v} is in I(V) as long as v ̸= 0. Intuitively, a basis B of V should
be a set containing as many linearly independent vectors as possible. More precisely,
this intuition would say that B ∈ I(V) and that no set of linearly independent vectors
can contain B as a strict subset. This second intuitive property can be reformulated by
saying that if C ∈ I(V) and B ⊆ C, then B = C. Such a B is called a maximal element
of I(V).

The above discussion is purely to get an intuitive idea, but the following theorem shows
that there is merit in that discussion.

Theorem 9.40

Let B be a maximal element of I(V). Then B is a basis of V.

Proof. By definition of I(V), the vectors in B are linearly independent. What needs



Note 9 9.4 EXTRA: WHY DOES ANY VECTOR SPACE HAVE A BASIS? 25

to be shown is that any vector in V can be written as a linear combination of vectors
in B. Suppose that this is not the case. Then there exists v ∈ V such that any linear
combination of vectors in B is distinct from v. We claim that in this case, the set B ∪ {v}
consists of linearly independent vectors. To show this, suppose that

c0 · v + c1 · v1 + · · ·+ cn · vn = 0, (9-5)

for some c0, c1, . . . , cn ∈ F and v1, . . . , vn ∈ B. If c0 = 0, we immediately see that c1 =
0, . . . , cn = 0, since the vectors in B are linearly independent. However, c0 cannot be
nonzero, since if it were, equation (9-5) would imply that v = −c−1

0 · c1 · v1 − · · · − c−1
0 ·

cn · vn, contrary to the assumption that v cannot be written as a linear combination of
vectors from B. Hence indeed, the set B ∪ {v} consists of linearly independent vectors,
just as claimed. Another way of saying this is that B∪{v} ∈ I(V), which in turn implies
that B was not a maximal element of I(V), contrary to the assumption that it was.
The contradiction shows that any vector in V can be written as a linear combination of
vectors from B. Hence B is a basis.

This theorem implies that in order to show that any vector space V has a basis, it is
enough to show that the set I(V) always contains a maximal element. This is a direct
consequence of a famous lemma called Zorn’s lemma. Formulating and proving Zorn’s
lemma needs tools from foundational mathematics though that are out of scope of these
notes.
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