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Note 12

Systems of linear ordinary differential
equations of degree one with constant
coefficients

In this chapter we will investigate some families of differential equations. Differential
equations are used to model processes occurring in nature. They occur in almost every
area of applied exact sciences, like (quantum) mechanics, (bio)chemistry, dynamics of
biological systems, construction engineering, the study of electrical components and
circuits, and many more. The theory of differential equations is vast and we will in this
book only take a first look at some special cases. Before starting with that, let us fix a
few conventions and notations that we will use in the remainder of this chapter.

As we have seen, in general a function f : A → B is a map between two sets. In this
chapter, we will always assume that the domain of the function is the set of real numbers
R. If the codomain B is equal to R, we call such a function a real-valued function. If
B = C, we call such a function a complex-valued function. Real- and complex-valued
functions occur in many places in mathematics, especially in analysis. The techniques
and tools from linear algebra that we have discussed so far in previous chapters, can
be used in analysis as well. More precisely, we will see how tools from linear algebra
can be used to solve specific types of differential equations. Without being too formal,
one can think of a differential equation as a way to find real-valued or complex-valued
functions with additional properties involving the derivatives of that function. We will
assume that the reader is familiar with the derivative of a real-valued function. Given a
function f : R→ R, we denote by f ′, the derivative of f , provided it exists. The function
f ′ : R→ R is again a real-valued function and as such one can attempt to compute the
derivative of f ′. If it exists, it is typically denoted by f ′′ or by f (2). Similarly, one can
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recursively define for n ≥ 3, the function f (n) : R → R to be the derivative of f (n−1),
provided it exists. We have seen this notation in Example 9.34 as well. It is customary
to write f (0) = f and f (1) = f ′. In the theory of real- and complex-valued functions, it
is quite common to write down a function as f (t), rather than writing f : R → R (for
real-valued functions) or f : R → C (for complex-valued functions). In the remainder
of this section we will also often do this.

We can now explain in broad terms what we mean by an n-th order ordinary differential
equation (abbreviated: ODE).

Definition 12.1

Let n be a natural number. An n-th order ODE is an equation of the form

F( f (n)(t), . . . , f ′(t), f (t), t) = 0,

where F is a function taking n + 2 variables as input.

A solution of such an ODE is then a real-valued function f (t) such that

F( f (n)(t), . . . , f ′(t), f (t), t) = 0

for all t ∈ R. There are many variations and more refined definitions. For example in
some cases, one only needs that F( f (n)(t), . . . , f ′(t), f (t), t) = 0 for all t in a subset of R.
However, all we need at this point is an intuitive understanding of what an ODE is and
therefore we will not go into more depth here. As a first small example: the function
f (t) = et is a solution to the ODE f ′(t)− f (t) = 0, because it holds that (et)′ = et. We
will see more examples later on.

One is often primarily interested in real-valued functions as solution to an ODE, but
sometimes it is convenient to look for complex-valued solutions as well. For us the
main reason will be to use such complex-valued solutions to find real-valued solutions
of an ODE. Let us therefore explain how to compute the derivative of complex-valued
functions. Given a complex-valued function f : R → C, one can for any t ∈ R, write
f (t) = f1(t)+ i f2(t), where f1(t) = Re( f (t)) is the real part of f (t) and f2(t) = Im( f (t))
is the imaginary part of f (t). In this way, any complex-valued function f : R → C,
gives rise to two real valued-functions Re( f ) : R → R defined as t 7→ Re( f (t)) and
Im( f ) : R → R defines as t 7→ Im( f (t)). Conversely, given two real-valued functions
f1 : R→ R and f2 : R→ R, we can define a complex-valued function f = f1 + i · f2 as
t 7→ f1(t) + i · f2(t). If the derivatives of f1 and f2 exist, we will define the derivative of
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f to be the function f ′ = f ′1 + i · f ′2. Similarly, we can define for any nonnegative integer

n, the n-th derivative f (n) = f (n)1 + i · f (n)2 , provided that both f (n)1 and f (n)2 exist. With
these conventions in place, we can therefore also talk about complex-valued functions
as solutions of an ODE. We will see examples of such solutions later on.

After this brief introductory sketch of what an ODE is and what a solution to an ODE
is, let us look at some particular cases and examples in the following sections.

12.1 Linear first-order ODEs

According to Definition 12.1, a first-order ODE gives a relation between a function f (t)
and its derivative f ′(t). For example f ′(t) = f (t) is a first-order ODE, but also a more
complicated expression like

sin( f (t) f ′(t)) = f ′(t)2 + et

is a first-order ODE. To bring these examples in the form of Definition 12.1, we just
rewrite the expressions and make the righthand side zero. For example, the first ex-
pression can be written as f ′(t) − f (t) = 0, while the second example can be written
as sin( f (t) f ′(t))− f ′(t)2 − et = 0. Let us consider a couple of examples of first-order
ODEs.

Example 12.2

Investigate whether or not the function f (t) = e2t is a solution to one of the following ODEs:

1. f ′(t)− 2 f (t) = 0

2. f ′(t)2 − 4 f (t) = 0

3. ln( f ′(t))− ln( f (t)) = ln(2)

Answer:

1. Using the chain rule we find that f ′(t) = (e2t)′ = e2t(2t)′ = e2t2 = 2e2t. Therefore it
holds that

f ′(t)− 2 f (t) = 2e2t − 2e2t = 0.

We can therefore conclude that the function f (t) = e2t is a solution to the ODE f ′(t) =
2 f (t).
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2. We have seen that f ′(t) = 2e2t. Therefore it holds that

f ′(t)2 − 4 f (t) = (2e2t)2 − 4e2t = 4(e2t)2 − 4e2t = 4e4t − 4e2t ̸= 0.

Therefore the function f (t) = e2t is not a solution to the ODE f ′(t)2 − 4 f (t) = 0

3. If f (t) = e2t, we find that

ln( f ′(t))− ln( f (t)) = ln(2e2t)− ln(e2t) = ln(2) + ln(e2t)− ln(e2t) = ln(2),

so the function f (t) = e2t is a solution to the ODE ln( f ′(t))− ln( f (t)) = ln(2).

Let us take a look again at the ODE f ′(t) = f (t). We mentioned before that the function
f (t) = et is a solution to this ODE. However, it is not the only one. For example the
functions f (t) = 2et and f (t) = −5et both also satisfy that f ′(t) = f (t). In fact any
function of the form f (t) = c · et, with c ∈ R a constant, is a solution to the ODE
f ′(t) = f (t).

One can show that in fact any solution to the ODE f ′(t) = f (t) is of the form f (t) = c · et.
Such a description of all possible solutions to an ODE is called its general solution. The
term general solution was used in a similar way when describing solutions to systems
of linear equations. Using this terminology we can say that the general solution to the
ODE f ′(t) = f (t) is given by f (t) = c · et, with c ∈ R.

It can be difficult to find an explicit expression for the general solution to an ODE. How-
ever, for some classes of ODEs, it is possible. We will now look at one such class. An
ODE of the form

f ′(t) = a(t) f (t) + q(t), (12-1)

with a(t) and q(t) functions in the variable t, is called a linear first-order ODE. The func-
tion q(t) is also called the forcing function of this ODE. For example the ODE f ′(t) = f (t)
is a linear first-order ODE. More precisely, by choosing a : R → R to be the function
defined by t 7→ 1 and q : R → R to be the function defined by t 7→ 0, equation (12-1)
simplifies to the equation f ′(t) = f (t).

The ODE from equation (12-1) is called homogeneous if the forcing function q(t) is the
zero function and inhomogeneous otherwise.

It turns out that one can give a formula for the general solution to a linear first-order
ODE. In this formula we will need a bit of notation. We will by P(t) denote a primitive
function (also known as an antiderivative) of the function a(t), that is to say, a function
satisfying P′(t) = a(t). We will assume in the remainder of this subsection that the
function a(t) in fact has such a primitive function. We will also need to assume that the
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function eP(t)q(t) has a primitive function. One can show that these assumptions are
true if for example both function a(t) and q(t) are differentiable. If this is the case, we
have the following result.

Theorem 12.3

The general solution to the ODE f ′(t) = a(t) f (t) + q(t) is given by

f (t) = eP(t)
∫

e−P(t)q(t)dt.

Proof. Recall that P′(t) = a(t). Using first the product rule and then the chain rule, we
find that(

e−P(t) f (t)
)′

=
(

e−P(t)
)′

f (t) + e−P(t) f ′(t) = −e−P(t)a(t) f (t) + e−P(t) f ′(t).

Therefore the following holds:

f ′(t) = a(t) f (t) + q(t)⇔ e−P(t) f ′(t)− e−P(t)a(t) f (t) = e−P(t)q(t)

⇔
(

e−P(t) f (t)
)′

= e−P(t)q(t)

⇔ e−P(t) f (t) =
∫

e−P(t)q(t)dt

⇔ f (t) = eP(t)
∫

e−P(t)q(t)dt.

When computing the integral in Theorem 12.3, one should not forget the integration
constant, since this constant is needed when finding the general solution. Let us look at
some examples.

Example 12.4

Compute the general solution to the following ODEs:

1. f ′(t) = f (t)

2. f ′(t) = − sin(t) f (t) + sin(t)
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3. f ′(t) = −t−1 f (t) + 1, with t > 0

Answer:

1. Rewriting f ′(t) = f (t) as f ′(t) − f (t) = 0, we see that we can apply Theorem 12.3,
using a(t) = 1 and q(t) = 0. A primitive function of a(t) = 1 is given by for example
P(t) = t. Then we get that the general solution is given by

f (t) = et
∫

e−t0 dt = et
∫

0 dt = etc = cet.

This agrees with the general solution we found before for this ODE.

2. We can use Theorem 12.3 with a(t) = − sin(t) and q(t) = sin(t). We can choose
P(t) = cos(t) and we therefore find that the desired general solution is given by

f (t) = ecos(t)
∫

e− cos(t) sin(t)dt = ecos(t)
(

e− cos(t) + c
)
= 1 + cecos(t).

3. Theorem 12.3 applies with a(t) = −t−1 = −1/t and q(t) = 1. Since t > 0, this
means that we can choose P(t) = − ln(t). The general solution to the ODE f ′(t) =

−t−1 f (t) + 1 then becomes

f (t) = e− ln(t)
∫

eln(t)dt = (1/eln(t))
∫

tdt =
1
t

(
1
2

t2 + c
)
=

t
2
+

c
t
.

One important special case of Theorem 12.3 is when the function a is a constant function,
say a(t) = a0 for all t. In this case, Theorem 12.3 simplifies to the following statement.

Corollary 12.5

Let a0 ∈ R and q(t) be a real-valued, differentiable function. Then the ODE f ′(t) =
a0 f (t) + q(t) has general solution f (t) = ea0t ∫ e−a0tq(t)dt. More concretely, if Q(t)
is a primitive function of e−a0tq(t), then the general solution can be written as f (t) =
c · ea0t + ea0tQ(t), where c ∈ R is arbitrary.

As said before, ODEs are used to model processes occurring in nature. The general so-
lution of an ODE describes all possible behaviors of the process. In order to find out
which one of the possibilities is the right one in a particular situation, one needs more
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information, that one usually can obtain by performing measurements. One possibility
is to describe the behaviour of the function f for a specific value of the variable t. One
could imagine that one measures the exact state of the process at the beginning of an ex-
periment. Mathematically speaking, what we will do is to pose an initial value condition,
that is to say, a condition on a function f (t) of the form f (t0) = y0, .

Definition 12.6

Given a real-valued function f (t) and real numbers t0 and y0 such that f (t0) = y0.
Then the function f (t) is said to satisfy the initial value condition f (t0) = y0.

It turns out that in many interesting applications, a function f : R → R is completely
determined if it satisfies both a first-order ODE and an initial value condition. We give
a description of the situation for general ODEs.

Definition 12.7

Let f (t) be a real-valued function satisfying:

1. An n-th order ODE F( f (n)(t), . . . , f ′(t), f (t), t) = 0.

2. The initial value conditions f (t0) = y0, f ′(t0) = y1, . . . , f (n)(t0) = yn, for given
t0 ∈ R and values y0, y1, . . . , yn ∈ R.

The two conditions together are called an initial value problem. The function f (t) is
said to be a solution to the initial value problem.

For a first-order ODE F( f ′(t), f (t), t) = 0, this amount to saying that f (t) is a solution
to the initial value problem if it satisfies

1. F( f ′(t), f (t), t) = 0 and

2. f (t0) = y0, for given t0 ∈ R and a value y0.

The strategy of solving an initial value problem often follows the same pattern. First
compute the general solution to the given ODE. This general solution should contain
some parameters such as c. Then use the initial value condition to determine c. The
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resulting function is the desired solution. Let us look at two examples in the case of
first-order ODEs.

Example 12.8

Solve the following initial value problems. That is to say, compute the function f (t) satisfy-
ing:

1. The ODE f ′(t) = f (t) and the initial value condition f (0) = 7.

2. The ODE f ′(t) + sin(t) f (t) = sin(t) and the initial value condition f (π) = 2.

Answer:

Note that we already have computed the general solution to the given two ODEs in Example
12.4. Now let us look at each initial value problem separately.

1. We have already seen that the general solution to f ′(t) = f (t) is given by f (t) = cet.
The trick is to evaluate f (t) in 0 an compare the result with the initial value condition.
We get that f (0) = c, but according to the initial value condition we should have
f (0) = 7. This means that c = 7. Now that we know c, we find that the desired
function f : R→ R is given by

f (t) = 7et.

2. The general solution is in this case given by f (t) = 1 + cecos(t). Using the initial value
condition, we find that 2 = f (π) = 1 + cecos(π) = 1 + ce−1. This means that ce−1 = 1
and therefore c = e. Hence, the desired function f : R→ R is given by

f (t) = 1 + e · ecos(t) = 1 + e1+cos(t).

Before starting to consider more general ODEs, let us establish one nice property of the
complex exponential function. We know that the derivative of the real-valued function
f (t) = eλt is simply f ′(t) = λeλt for any λ ∈ R. It turns out that this is also true for the
complex exponential function:
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Lemma 12.9

Let λ ∈ C and consider the complex-valued function f : R → C defined as f (x) =
eλt. Then Re( f ) = eRe(λ)t cos(Im(λ)t), Im( f ) = eRe(λ)t sin(Im(λ)t) and f ′(t) = λeλt.

Proof. Let us write λ = λ1 + iλ2 in rectangular form. Then for any t ∈ R, we have

eλt = eλ1t+i·λ2t

= eλ1t · ei·λ2t

= eλ1t · (cos(λ2t) + i · sin(λ2t))
= eλ1t cos(λ2t) + i · eλ1t sin(λ2t)).

This shows that the real part of the expression f (t) = eλt is given by Re( f (t)) =
eλ1t cos(λ2t), while its imaginary part is given by Im( f (t)) = eλ1t sin(λ2t). Now we
set f ′(t) = (Re( f (t)))′ + i · (Im( f (t)))′. Using the product and chain rule to compute
Re( f (t))′ and Im( f (t))′, we get

f ′(t) = Re( f (t))′ + i · Im( f (t))′

= (eλ1t cos(λ2t))′ + i · (eλ1t sin(λ2t))′

= (eλ1tλ1 cos(λ2t) + eλ1t(− sin(λ2t))λ2) + i · (eλ1tλ1 sin(λ2t) + eλ1t cos(λ2t)λ2)

= (λ1 + iλ2)eλ1t cos(λ2t) + (−λ2 + iλ1)eλ1t sin(λ2t)
= (λ1 + iλ2)eλ1t(cos(λ2t) + i sin(λ2t))
= (λ1 + iλ2)eλ1teiλ2t

= λeλt.

This lemma will be extremely useful when finding solutions to certain types of ODEs
later on.

12.2 Systems of linear first-order ODEs with constant
coefficients

In the previous section, we considered linear, first-order ODEs. Now, we consider a
system of such ODEs, but we will only consider the case where all the functions occur-
ring as coefficients are constant. After this, in the next section, we will show that some
higher order ODEs can be solved using the theory from this section.
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Definition 12.10

Let n > 0 be an integer, q1(t), . . . , qn(t) real-valued differentiable functions and A ∈
Rn×n a matrix. Then a system of linear, first-order ODEs is an equation of the form

f ′1(t)
f ′2(t)

...
f ′n(t)

 = A ·


f1(t)
f2(t)

...
fn(t)

+


q1(t)
q2(t)

...
qn(t)

 (12-2)

The matrix A is called the coefficient matrix of the system, while the functions
q1(t), . . . , qn(t) are called the forcing functionsforcing function of the system. If all forc-
ing functions q1(t), . . . , qn(t) are equal to the zero function, the system of ODEs is
called homogeneous, otherwise it is called inhomogeneous. A solution to an inhomoge-
neous system of linear, first-order ODEs is called a particular solution.

Example 12.11

Given is the following system of linear, first-order ODEs:[
f ′1(t)
f ′2(t)

]
=

[
2 1
0 2

]
·
[

f1(t)
f2(t)

]
+

[
et

0

]
. (12-3)

1. Is the given system of ODEs (12-3) homogeneous or inhomogeneous?

2. Is ( f1(t), f2(t)) = (e2t, 0) a solution to equation (12-3)?

3. Is ( f1(t), f2(t)) = (−et, 0) a solution to equation (12-3)?

Answer:

1. The system of ODEs (12-3) is inhomogeneous. Even though the forcing function q2(t)
is the zero function, the function q1(t) is not. For a homogeneous system, all forcing
functions should be the zero function.

2. If ( f1(t), f2(t)) = (e2t, 0), then[
f ′1(t)
f ′2(t)

]
=

[
(e2t)′

0

]
=

[
2e2t

0

]
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and [
2 1
0 2

]
·
[

f1(t)
f2(t)

]
+

[
et

0

]
=

[
2 · e2t + 1 · 0
0 · e2t + 2 · 0

]
+

[
et

0

]
=

[
2e2t + et

0

]
.

Therefore ( f1(t), f2(t)) = (e2t, 0) is not a solution to equation (12-3).

3. If ( f1(t), f2(t)) = (−et, 0), then[
f ′1(t)
f ′2(t)

]
=

[
(−et)′

0

]
=

[
−et

0

]
and [

2 1
0 2

]
·
[

f1(t)
f2(t)

]
+

[
et

0

]
=

[
2 · (−et) + 1 · 0
0 · (−et) + 2 · 0

]
+

[
et

0

]
=

[
−et

0

]
.

Therefore ( f1(t), f2(t)) = (−et, 0) is a solution to equation (12-3). By definition, it is in
fact a particular solution to equation (12-3).

Now, a bit similarly to what we did for systems of linear equations, we begin by de-
scribing the structure of the solutions of systems of linear, first-order ODEs.

Theorem 12.12

Let an inhomogeneous system of ODEs as in equation (12-2) be given and suppose
that (g1(t), g2(t), . . . , gn(t)) is a particular solution of this system. Then any other
solution (g̃1(t), g̃2(t), . . . , g̃n(t)) to equation (12-2) is of the form

g̃1(t)
g̃2(t)

...
g̃n(t)

 =


g1(t)
g2(t)

...
gn(t)

+


f1(t)
f2(t)

...
fn(t)

 ,

where ( f1(t), f2(t), . . . , fn(t)) is a solution to the homogeneous system of ODEs cor-
responding to equation (12-2):

f ′1(t)
f ′2(t)

...
f ′n(t)

 = A ·


f1(t)
f2(t)

...
fn(t)

 . (12-4)
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Proof. Suppose that (g̃1(t), g̃2(t), . . . , g̃n(t)) is an arbitrary solution to equation (12-2),
then a direct computation shows that (g̃1(t)− g1(t), g̃2(t)− g2(t), . . . , g̃n(t)− gn(t)) sat-
isfies equation (12-4). If we then define fi(t) = g̃i(t)− gi(t) for i = 1, . . . , n, we see that
(g̃1(t), g̃2(t), . . . , g̃n(t)) can be written as stated in the theorem.

Conversely, if ( f1(t), f2(t), . . . , fn(t)) is a solution to the homogeneous system from
equation (12-4), then a direct calculation shows that (g1(t)+ f1(t), g2(t)+ f2(t), . . . , gn(t)+
fn(t)) is a solution to the inhomogeneous system from equation (12-2).

Algorithmically, this means that in order to solve an inhomogeneous system of ODEs as
in equation (12-2), we need to find a particular solution of it and then all solutions to the
corresponding homogeneous system of ODEs given in equation (12-4). Conceptually,
one can understand Theorem 12.12 in a different way. Let C∞ be the vector space from
Example 9.34. It consists of all functions with domain and codomain R that can be
differentiated arbitrarily often. Now for a given matrix A ∈ Rn×n, consider the map
DA : Cn

∞ → Cn
∞ defined by

DA




f1(t)
f2(t)

...
fn(t)


 =


f ′1(t)
f ′2(t)

...
f ′n(t)

−A ·


f1(t)
f2(t)

...
fn(t)

 . (12-5)

One can show that DA is a linear map of real vector spaces. The kernel of this map
is exactly the solution set the homogeneous system of ODEs in equation (12-4). This
observation is a generalization of what we already have seen in Example 10.24. A par-
ticular solution is then nothing but a vector vp = (g1(t), g2(t), . . . , gn(t)) ∈ Cn

∞ such that
DA(vp) = (q1(t), . . . , qn(t)). Therefore, Theorem 12.12 is nothing but a special case of
the second item in Theorem 10.38. As an aside, since the kernel of any linear map is a
subspace, we can conclude that the solution set to a homogeneous system of linear, first-
order ODEs (with constant coefficients) is in fact a vector space over the real numbers,
since it is the kernel of the linear map DA. A very useful fact, that we will not prove
here, is that this vector space has finite dimension, namely n. This is useful to know,
since it means that to describe all solutions to system (12-4), it is enough to find a basis,
that is to say, n linearly independent solutions. We will use this freely later on. What we
will primarily focus on in the remainder of this section is how to find such a basis. The
notion of a general solution we already encountered in Section 12.1 for linear, first-order
ODEs can now be generalized as follows:
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Definition 12.13

Let A ∈ Rn×n be given. The general solution of the homogeneous ODEs
f ′1(t)
f ′2(t)

...
f ′n(t)

 = A ·


f1(t)
f2(t)

...
fn(t)


is an expression of the form

c1 · v1 + · · ·+ cn · vn , c1, . . . , cn ∈ R,

where (v1, . . . , vn) is an ordered basis of the kernel of the linear map DA : Cn
∞ → Cn

∞
defined in equation (12-5). If q1(t), . . . , qn(t) are forcing functions (not all zero) and
vp = (g1(t), . . . , gn(t)) ∈ Cn

∞ a particular solution of the inhomogeneous system of
ODEs 

f ′1(t)
f ′2(t)

...
f ′n(t)

 = A ·


f1(t)
f2(t)

...
fn(t)

+


q1(t)
q2(t)

...
qn(t)

 ,

then the general solution of the inhomogeneous system is an expression of the form

vp + c1 · v1 + · · ·+ cn · vn , c1, . . . , cn ∈ R.

A first important trick is to use the theory of eigenvalues and eigenvectors of the matrix
A, as we will see in the next lemma.
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Lemma 12.14

Let A ∈ Rn×n be a matrix and suppose that v = (v1, . . . , vn) ∈ Rn is an eigenvector
of A with eigenvalue λ ∈ R. Then the vector of functions

f1(t)
f2(t)

...
fn(t)

 =


v1eλt

v2eλt

...
vneλt


satisfies the homogeneous system of ODEs

f ′1(t)
f ′2(t)

...
f ′n(t)

 = A ·


f1(t)
f2(t)

...
fn(t)

 .

Proof. On the one hand, we have
f ′1(t)
f ′2(t)

...
f ′n(t)

 =


v1(eλt)′

v2(eλt)′

...
vn(eλt)′

 =


v1λeλt

v2λeλt

...
vnλeλt

 = λ


v1eλt

v2eλt

...
vneλt

 = λ


f1(t)
f2(t)

...
fn(t)

 .

On the other hand, we find

A ·


f1(t)
f2(t)

...
fn(t)

 = A ·


v1eλt

v2eλt

...
vneλt

 = A ·


v1
v2
...

vn

 · eλt = λ


v1
v2
...

vn

 · eλt = λ


f1(t)
f2(t)

...
fn(t)

 .
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Example 12.15

Let

A =

[
2 1
0 2

]
.

Find a solution to the homogeneous system of linear, first-order ODEs with coefficient matrix
A.

Answer:

We are asked to find a solution to the following system of ODEs:[
f ′1(t)
f ′2(t)

]
=

[
2 1
0 2

]
·
[

f1(t)
f2(t)

]
. (12-6)

With Lemma 12.14 in mind, we start by finding an eigenvalue and eigenvector of the given
matrix A. The characteristic polynomial of A is:

pA(Z) = det(A− λI2) = det
([

2− λ 1
0 2− λ

])
= (2− λ)2 = (λ− 2)2.

Hence 2 is the the only eigenvalue the matrix A has. To find an eigenvector of A with eigen-
value 2, we need to compute a nonzero vector from the kernel of the matrix A − 2I2. In
principle, we should then first find the reduced row echelon form of A − 2I2, but in this
particular case it is in reduced row echelon form already:

A− 2I2 =

[
0 1
0 0

]
We conclude that ker(A − 2I2) is a one-dimensional vector space with basis given by for
example {[

1
0

]}
.

Now Lemma 12.14 implies that[
f1(t)
f2(t)

]
=

[
1e2t

0e2t

]
=

[
e2t

0

]
is a solution to equation (12-6).

Lemma 12.14 is already good enough to find the general solution of equation (12-4) in
case the matrix A can be diagonalized.
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Theorem 12.16

Let A ∈ Rn×n be a matrix and let (v1, . . . , vn) be an ordered basis of Rn consisting of
eigenvectors of A corresponding to eigenvalues λ1, . . . , λn. Then the homogeneous
system (12-4) has general solution

c1 · v1eλ1t + · · ·+ cn · vneλnt , c1, . . . , cn ∈ R.

Proof. We already know from Lemma 12.14 that each of the vectors of functions vieλit for
i = 1, . . . , n is a solution. Using the fact that the solution space has dimension n, we are
done if we can show that these solutions are linearly independent. If ∑n

i=1 aivieλit = 0
for certain ai ∈ R, then in particular putting t = 0, we find that ∑n

i=1 aivi = 0. Since the
vectors v1, . . . , vn are linearly independent, forming an ordered basis of Rn, we conclude
that ai = 0 for all i = 1, . . . , n. Hence the vectors of functions v1eλ1t, . . . , vneλnt are
linearly independent as well.

Note that in Theorem 12.16 it can happen that some eigenvalues appear several times.
In other words: we allow the case where the algebraic multiplicity of some eigenvalues
is greater than one. However, we assume in Theorem 12.16, that there exists a basis
consisting of eigenvectors (or equivalently that the matrix A is diagonalizable). Hence
the theorem will not be applicable if some eigenvalue of A has a smaller geometric than
algebraic multiplicity.

Example 12.17

Let

A =


2 0 0 0
0 2 0 0
0 0 0 1
0 0 1 0

 .

Then pA(Z) = (Z− 2)2 · (Z2 − 1) = (Z− 2)2 · (Z− 1) · (Z + 1). Hence A has three eigenval-
ues 2, 1 and −1 with algebraic multiplicities 2, 1 and 1 respectively. One can show that bases
of the eigenspaces E2, E1 and E−1 are given by


1
0
0
0

 ,


0
1
0
0


 ,




0
0
1
1


 and




0
0
1
−1


 .
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In particular, the geometric and algebraic multiplicity is the same for each eigenvalue. Using
Theorem 12.16, we see that the general solution to the system of linear, first-order ODEs

f ′1(t)
f ′2(t)
f ′3(t)
f ′4(t)

 =


2 0 0 0
0 2 0 0
0 0 0 1
0 0 1 0

 ·


f1(t)
f2(t)
f3(t)
f4(t)


is given by

f1(t)
f2(t)
f3(t)
f4(t)

 = c1


1
0
0
0

 e2t + c2


0
1
0
0

 e2t + c3


0
0
1
1

 et + c4


0
0
1
−1

 e−t =


c1e2t

c2e2t

c3et + c4e−t

c3et − c4e−t

 ,

where c1, c2, c3, c4 ∈ R.

The requirement in Theorem 12.16 that there exists a basis of eigenvectors can fail. One
thing that could happen is that the characteristic polynomial pA(Z) does not factor in a
product of degree one polynomials. Equivalently: pA(Z) could have complex, non-real
roots. The following theorem extends Theorem 12.16 in that setting.

Theorem 12.18

Let A ∈ Cn×n be a matrix and let (v1, . . . , vn) be an ordered basis of Cn consisting of
eigenvectors of A corresponding to (possibly complex) eigenvalues λ1, . . . , λn. Then
over the complex numbers the homogeneous system (12-4) has general solution

c1 · v1eλ1t + · · ·+ cn · vneλnt , c1, . . . , cn ∈ C.

Proof. The proof is practically identical to that of Theorem 12.16. The only difference is
that we now work over the complex numbers. Note that Lemma 12.9 guarantees that
(eλt)′ = λeλt also for λ ∈ C.

Now suppose that A ∈ Rn×n, but that its characteristic polynomial pA(Z) has complex
roots. We could view A as a matrix in Cn×n and apply Theorem 12.18 to obtain a general
solution. The problem with this, is that we now found a general solution of complex-
valued solutions to equation 12-4. One often is interested in a general solution of the
real-valued solutions instead. Fortunately, this can be achieved with a few tricks. The
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main trick is that since pA(Z) has coefficients in R if A ∈ Rn×n, non-real roots occur in
pairs: if µ ∈ C \R is a root, then also µ ∈ C is a root, where µ denotes the complex
conjugated of λ (see Lemma 4.12). In particular, the roots of pA(Z) can be arranged in
the form λ1, . . . , λr for the real roots and µ1, . . . , µs, µ1, . . . , µs for the complex, nonreal
roots. Then n = r + 2s, where we simply repeat a root m times if it occurs with some
multiplicity. Let us illustrate this with an example.

Example 12.19

Suppose that pA(Z) = (Z − 1) · (Z − 2)3 · (Z2 + 1)2 for some matrix A ∈ R7×7. Then the
roots of this polynomial are 1, 2 with multiplicity 3 and i,−i, both with multiplicity 2. There
are two real roots, namely 1 and 2, but if we consider these roots with their multiplicity, we
should repeat the root 2 thrice. Hence λ1 = 1, λ2 = 2, λ3 = 2 and λ4 = 2. There are two
complex, nonreal roots i and−i, which both should be repeated twice. Hence we have µ1 = i,
µ2 = i, whence µ1 = −i and µ2 = −i. Hence in this setting, we have r = 3 and s = 2.

To describe the general solution of equation 12-4 in case pA(Z) has nonreal roots, it will
be convenient to define the complex conjugate of a vector w ∈ Cn: if w = (w1, . . . , wn),
then w = (w1, . . . , wn). The point is that if A ∈ Rn×n and A ·w = µ ·w for some w ∈ Cn

and µ ∈ C \R, then taking the complex conjugate (and using that the coefficients of A
are real numbers), we see that A ·w = µ ·w. With this in mind, Theorem 12.18 implies
the following.
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Corollary 12.20

Suppose that A ∈ Rn×n and that the roots of its characteristic polynomial pA(Z)
are arranged with multiplicity as λ1, . . . , λr ∈ R and µ1, . . . , µs, µ1, . . . , µs, where
µ1, . . . , µs ∈ C \R. Now suppose that there exist vectors vi ∈ Rn for i = 1, . . . , s and
wj ∈ Cn for j = 1, . . . , s such that:

1. A · vi = λi · vi for i = 1, . . . , r,

2. A ·wj = µj ·wj for j = 1, . . . , s,

3. the vectors v1, . . . , vr, w1, . . . , ws, w1, . . . , ws form an ordered basis of Cn.

Then the homogeneous system (12-4) has general solution

c1 · v1eλ1t + · · ·+ cr · vreλrt + cr+1 · Re(w1eµ1t) + · · ·+ cr+s · Re(wseµst)+

cr+s+1 · Im(w1eµ1t) + · · ·+ cn · Im(wseµst) , c1, . . . , cn ∈ R.

Proof. When viewed as a matrix over C, the eigenvalues of A are given by

λ1, . . . , λr, µ1, . . . , µs, µ1, . . . , µs.

Hence Theorem 12.18 implies that

v1eλ1t, . . . , vreλrt, w1eµ1t, . . . , wseµst, w1eµ1t, . . . , wseµst

form a basis of the set of solutions of equation (12-4) when working over C. To find a
basis of this set of solutions when working over R, we modify this basis. First of all,
the solutions v1eλ1t, . . . , vreλrt are already real-valued functions, so no modification is
needed for these. Given a pair of complex-valued solutions wjeµjt and wje

µjt for some j,
we can replace this pair by the pair

wjeµjt + wje
µjt

2
= Re(wjeµjt) and

wjeµjt −wje
µjt

2i
= Im(wjeµjt).

Since Re(wjeµjt) and Im(wjeµjt) describe real-valued functions, we therefore obtain a
basis of all real-valued solutions of equation (12-4) from the n solutions

v1eλ1t, . . . , vreλrt, Re(w1eµ1t), . . . , Re(wseµst), Im(w1eµ1t), . . . , Im(wseµst).
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The first item in the corollary simply means that the vector vi is an eigenvector of A with
eigenvalue λi. The second item means that if we would work over the field of complex
numbers C, instead of R, then wj would be an eigenvector with eigenvalue µj. In that
case wj can be shown to be an eigenvector of A with eigenvalue µj. Finally, the third
item means that there exists a basis of Cn consisting of eigenvectors of A, when viewed
as a matrix in Cn×n. Hence the three items together can also be reformulated as: when
viewed as a matrix in Cn×n, the matrix A is diagonalizable.

Corollary 12.20 may look complicated at first sight, but it is very practical in concrete
cases. Let us therefore consider an example.

Example 12.21

Let

A =

[
0 13
−1 4

]
.

The aim in this example is to show how to obtain the general solution of the homogeneous
system of ODEs [

f ′1(t)
f ′2(t)

]
=

[
0 13
−1 4

]
·
[

f1(t)
f2(t)

]
. (12-7)

To be more precise, we want to find the general solution consisting of real-valued functions.

First of all, we compute that

pA(Z) = det(A−ZI2) = det
([
−Z 13
−1 4− Z

])
= (−Z) · (4−Z)− 13 · (−1) = Z2− 4Z+ 13.

This polynomial has roots 2 + 3i and 2− 3i (see Theorem 4.6). Since the roots are nonreal,
let us work over the complex numbers for now. First we compute a complex eigenvector for
the nonreal root 2 + 3i. We do this by finding the reduced row echelon form of the matrix
A− (2 + 3i)I2:

A− (2 + 3i)I2 =

[
−2− 3i 13
−1 2− 3i

]
−→

R1 ↔ R2

[
−1 2− 3i
−2− 3i 13

]
−→

R1 ← −R1

[
1 −2 + 3i

−2− 3i 13

]
−→

R2 ← R2 + (2 + 3i)R1

[
1 −2 + 3i
0 0

]
.

Now we see that E2+3i, that is to say the kernel of A− (2 + 3i)I2 when viewed as a matrix in
C2×2, is equal to {(v1, v2) ∈ C2 | v1 = (2− 3i)v2}. Hence a basis of E2+3i is for example given
by {[

2− 3i
1

]}
.
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Similarly, one shows that a possible basis of E2−3i is{[
2 + 3i

1

]}
,

but we do not actually need this second basis. Now following the recipee described in Corol-
lary 12.20, we first compute[

2− 3i
1

]
e(2+3i)t =

[
2− 3i

1

]
e2t(cos(3t) + i sin(3t))

=

[
(2− 3i)e2t(cos(3t) + i sin(3t))

e2t(cos(3t) + i sin(3t))

]
=

[
2e2t cos(3t) + 3e2t sin(3t) + i(2e2t sin(3t)− 3e2t cos(3t))

e2t cos(3t) + ie2t sin(3t)

]

Hence

Re
([

2− 3i
1

]
e(2+3i)t

)
=

[
2e2t cos(3t) + 3e2t sin(3t)

e2t cos(3t)

]
and

Im
([

2− 3i
1

]
e(2+3i)t

)
=

[
2e2t sin(3t)− 3e2t cos(3t)

e2t sin(3t)

]
.

By Corollary 12.20, we can conclude that the general solution of system (12-7) is given by[
f1(t)
f2(t)

]
= c1 ·

[
2e2t cos(3t) + 3e2t sin(3t)

e2t cos(3t)

]
+ c2 ·

[
2e2t sin(3t)− 3e2t cos(3t)

e2t sin(3t)

]
,

where c1, c2 ∈ R.

We have now given the general solution in case the matrix A is diagonalizable over
R (Theorem 12.16) or over C (Corollary 12.20). If the matrix is not diagonalizable, not
even over C, a formula for the general solution is known, but this is out of scope of these
notes. We will show an example though for a particular case.

Example 12.22

Let

A =

[
λ 1
0 λ

]
, with λ ∈ R.

This matrix has λ as eigenvalue with algebraic multiplicity two and geometric multiplicity
one. Hence Theorem 12.16 does not apply, since Eλ is only one-dimensional with basis for
example formed by the vector (1, 0).
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We wish to determine the general solution to the system of ODEs[
f ′1(t)
f ′2(t)

]
=

[
λ 1
0 λ

]
·
[

f1(t)
f2(t)

]
. (12-8)

In other words, we have the two ODEs f ′1(t) = λ · f1(t) + f2(t) and f ′2(t) = λ · f2(t). One
solution is found by putting f2(t) = 0, the zero function, and f1(t) = eλt. In other words:
the vector of functions (eλt, 0) is a solution to system (12-8). Another solution can be found
by choosing f2(t) = eλt. Then f1(t) needs to satisfy the linear inhomogeneous ODE f ′1(t) =
λ · f1(t) + eλt. Using Corollary 12.5, we see that f1(t) = eλt

∫
e−λteλtdt = eλtt + c · eλt, where

c ∈ R. Choosing c = 0, we see that ( f1(t), f2(t)) = (teλt, eλt) is also a solution to system
(12-8). Since we now have found two linearly independent solutions, we can conclude that
the general solution of system (12-8) is given by[

f1(t)
f2(t)

]
= c1 ·

[
eλt

0

]
+ c2 ·

[
teλt

eλt

]
, c1, c2 ∈ R.

12.3 Relating systems of linear, first-order ODEs with
linear, n-th order ODEs

As an application of the previous section, we briefly consider a very special type of n-th
order ODEs:

Definition 12.23

Let n be a natural number, a0, . . . , an−1 ∈ R constants and q : R → R a function.
Then a linear, n-th order ODE with constant coefficients is an ODE of the form

f (n)(t) + an−1 · f (n−1)(t) + · · ·+ a1 · f ′(t) + a0 · f (t) = q(t). (12-9)

The function q(t) is called the forcing function of the ODE. If the forcing function q(t)
is the zero function, the ODE is called homogeneous, otherwise it is called inhomoge-
neous.

As mentioned in Definition 12.7, one often poses initial value conditions of the form
f (t0) = y0, f ′(t0) = y1, . . . , f (n)(t0) = yn, for a given t0 ∈ R and values y0, y1, . . . , yn ∈
R. One can show that if q(t) is a differentiable function, then ODE (12-9) has exactly
one solution satisfying a given initial value condition. For ODEs as in equation (12-9), a
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way to find this solution is to first determine its general solution. We will explain how
to do this in this section.

The main trick is to relate a solution of a linear, n-th order ODE with constant coefficients
with a solution of an appropriately chosen system of linear, first-order ODEs.

Theorem 12.24

Let a function f : R→ R be given. If f is a solution to the ODE

f (n)(t) + an−1 · f (n−1)(t) + · · ·+ a1 · f ′(t) + a0 · f (t) = q(t), (12-10)

then the vector of functions ( f (t), f ′(t), . . . , f (n−1)(t)) is a solution to the system of
ODEs

f ′1(t)
f ′2(t)

...
f ′n(t)

 =


0 1 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 1 0
0 · · · 0 0 1
−a0 · · · · · · −an−2 −an−1

 ·


f1(t)
f2(t)

...
fn(t)

+


0
...
0

q(t)

 . (12-11)

Conversely, if ( f1(t), . . . , fn(t)) is a solution to the system of ODEs (12-11), then f1(t)
is a solution to ODE (12-10).

Proof. This is left to the reader.

Example 12.25

A function f (t) is a solution to the linear, second-order ODE f ′′(t) + 5 f ′(t) + 6 f (t) = 0 if and
only if the vector of functions ( f (t), f ′(t)) is a solution to the system of ODEs[

f ′1(t)
f ′2(t)

]
=

[
0 1
−6 −5

]
·
[

f1(t)
f2(t)

]
.

Theorem 12.24 implies that when investigating ODE (12-9), we can use all theory we
have developed in the previous section. For example, we can conclude the following.
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Corollary 12.26

Let an inhomogeneous, linear, n-th order ODE

f (n)(t) + an−1 · f (n−1)(t) + · · ·+ a1 · f ′(t) + a0 · f (t) = q(t)

be given and suppose that fp(t) is a particular solution of this differential equation.
Then any other solution f (t) is of the form fp(t) + fh(t), where fh(t) is a solution to
the corresponding homogeneous ODE

f (n)(t) + an−1 · f (n−1)(t) + · · ·+ a1 · f ′(t) + a0 · f (t) = 0. (12-12)

Proof. This follows by combining Theorems 12.12 and 12.24.

As for systems of n linear, first-order ODEs, one can show that the solution set of a ho-
mogeneous, linear, n-th order ODE forms a vector space of dimension n. Therefore, to
describe a general solution, one needs to find n linearly independent solutions. Simi-
larly as in the case of systems of linear, first-order ODEs, a first step towards computing
the general solution of a linear, n-th order ODE, is to find the general solution of the cor-
responding homogeneous ODE. If we would use Theorem 12.24, the first step would be
to compute the characteristic polynomial of matrices of the form occurring in Theorem
12.24. Fortunately, there is a practical formula for the characteristic polynomials of such
matrices. It even works over any field F.

Lemma 12.27

Let F be a field, n ≥ 2 an integer and a0, . . . , an−1 ∈ F. Then the characteristic
polynomial of the matrix

A =


0 1 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 1 0
0 · · · 0 0 1
−a0 · · · · · · −an−2 −an−1


is equal to

pA(Z) = (−1)n · (Zn + an−1Zn−1 + · · ·+ a1Z + a0).
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Proof. We prove this by induction on n for n ̸= 2. If n = 2, we can directly see that

pA(Z) = det
([
−Z 1
−a0 −a1 − Z

])
= (−Z) · (−a1 − Z)− 1 · (−a0) = Z2 + a1Z + a0.

Now assume that n > 2 and that the result is true for n− 1. Developing the determinant
of A− ZIn in the first column, we see that:

det (A− ZIn) = −Z · det




−Z 1 0 · · · 0

... . . . . . . . . . ...
0 · · · −Z 1 0
0 · · · 0 −Z 1
−a1 · · · · · · −an−2 −an−1 − Z





+ (−1)n · (−a0) · det




1 0 0 · · · 0
−Z 1 0 · · · 0

... . . . . . . . . . ...
0 · · · −Z 1 0
0 · · · 0 −Z 1



 .

Using the induction hypothesis on the first determinant after the equality and Theorem
8.11 for the second determinant, we see that

det (A− ZIn) = (−Z) · (−1)n−1 · (Zn−1+an−1Zn−2 + · · ·+ a1) + (−1)n−1 · (−a0) · 1
= (−1)n · (Zn + an−1Zn−1 + . . . f a1Z + a0).

This concludes the induction step. Hence the lemma is true for any integer n ≥ 2.

The matrix in Lemma 12.27 is called the companion matrix of the polynomial Zn + an−1Zn−1 +
· · ·+ a0. Lemma 12.27 implies that when solving the linear, n-th order ODE (12-9), then
the first thing one needs to do is to find the roots of the polynomial Zn + an−1Zn−1 +
. . . f a1Z + a0. The polynomial

Zn + an−1Zn−1 + . . . f a1Z + a0

is often called the characteristic polynomial of the ODE

f (n)(t) + an−1 · f (n−1)(t) + · · ·+ a1 · f ′(t) + a0 · f (t) = 0.

At this point, we could continue to develop the theory of linear, n-th order ODEs, but
we will not do this in these notes. Instead, we will study what happens in case n = 2 in
the next section.



Note 12 12.4 SOLVING HOMOGENEOUS, LINEAR, SECOND-ORDER ODES 26

12.4 Solving homogeneous, linear, second-order ODEs

The aim in this section is to find the general solution of a homogeneous ODE of the form

f ′′(t) + a1 f ′(t) + a0 f (t) = 0, where a0, a1 ∈ R. (12-13)

We have seen in the previous section that one should start by finding the roots of its
characteristic polynomial Z2 + a1Z + a0. There are three cases to distinguish, depend-
ing on whether this polynomial has two distinct real roots, two complex conjugated,
nonreal roots, or one real root with multiplicity two (see Theorem 4.6).

Case 1: The polynomial Z2 + a1Z + a0 has two distinct real roots. If Z2 + a1Z + a0
has two distinct real roots, this means that its discriminant D = a2

1 − 4a0 is positive and

that the real roots are λ1 =
−a1 +

√
D

2
and λ2 =

−a1 +
√

D
2

. We could now use The-
orem 12.24 and Theorem 12.16 to find the general solution to ODE (12-13), but a direct
approach is faster. The point is though that after the theory about systems of ODEs,
we expect that the general solution will involve the functions eλ1t and eλ2t. Indeed, we
simply claim that both eλ1t and eλ2t are solutions to ODE (12-13). For example, we see
that

(eλ1t)′′ + a1(eλ1t)′ + a0eλ1t = λ2
1eλ1t + a1λ1eλ1t + a0eλ1t

= (λ2
1 + a1λ1 + a0)eλ1t

= 0,

where in the last equality, we used that λ1 is a root of the polynomial Z2 + a1Z + a0.
Very similarly, one shows that the function eλ1t also is a solution. If D = a2

1 − 4a0 > 0,
the general solution to ODE (12-13) will therefore be:

c1 · eλ1t + c2 · eλ2t = c1 · e

(
−a1+

√
D

2

)
t
+ c2 · e

(
−a1−

√
D

2

)
t
, c1, c2 ∈ R. (12-14)

Case 2: The polynomial Z2 + a1Z + a0 has two nonreal roots. In this case the discrimi-

nant D = a2
1− 4a0 is negative and the roots of Z2 + a1Z + a0 are λ1 =

−a1 + i
√
|D|

2
and

λ2 =
−a1 − i

√
|D|

2
. Very similarly as in the previous case, one can show, this time using

Lemma 12.9, that both eλ1t and eλ2t are complex-valued solutions to ODE (12-13). To
find real-valued solutions, we simply take the real and imaginary parts of one of these
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solutions, inspired by what we did in Corollary 12.20. We have

Re(eλ1t) = Re(e(
−a1+i

√
|D|

2 )t) = e(
−a1

2 )t cos

(√
|D|
2

t

)

and similarly

Im(eλ1t) = Im(e(
−a1+i

√
|D|

2 )t) = e(
−a1

2 )t sin

(√
|D|
2

t

)
.

If D = a2
1 − 4a0 < 0, the general solution to ODE (12-13) will therefore be:

c1 · e(
−a1

2 )t cos

(√
|D|
2

t

)
+ c2 · e(

−a1
2 )t cos

(√
|D|
2

t

)
, c1, c2 ∈ R. (12-15)

Case 3: The polynomial Z2 + a1Z + a0 has one real root with multiplicity two. In this
case the discriminant D = a2

1 − 4a0 is zero and the double root is given by λ = −a1/2.
As in the previous cases, one can show directly that eλt is a solution to ODE (12-13), but
what is missing is a second solution. Again we can get inspiration from what happened
for systems of linear ODEs. In Example 12.22, we were in the situation that the algebraic
multiplicity of an eigenvalue was two, but its geometric multiplicity was one. We are in
a similar situation here. Indeed, if D = 0, then the companion matrix A of Z2 + a1Z + a0
has eigenvalue λ with algebraic multiplicity two, but one can show that its geometric
multiplicity is only one. Since in Example 12.22, the function teλt appeared, it is natural
to try if this function is a solution to ODE (12-13). This is indeed the case:

(teλt)′′ + a1(teλt)′ + a0teλt = (eλt + tλeλt)′ + a1(eλt + tλeλt) + a0teλt

= (λeλt + λeλt + tλ2eλt) + a1(eλt + tλeλt) + a0teλt

= (λ2 + a1λ + a0)teλt + (2λ + a1)eλt

= (2λ + a1)eλt

= 0,

where in the last two equalities we used that λ2 + a1λ + a0 = 0 and λ = −a1/2. We
conclude the following. If D = a2

1 − 4a0 = 0, the general solution to ODE (12-13) is:

c1 · eλt + c2 · teλt = c1 · e
(−a1

2

)
t
+ c2 · t · e

(−a1
2

)
t , c1, c2 ∈ R. (12-16)

We finish the section with considering several examples.
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Example 12.28

Compute the general solution to the differential equation f ′′(t)− 5 f ′(t) + 6 f (t) = 0.

Answer: The characteristic polynomial of the differential equation is Z2 − 5Z + 6. This poly-
nomial has discriminant 1 and therefore has two disctinct real roots. Computing these roots
in the usual way, one finds that they are 2 and 3.

Using equation (12-14), we then find the following general solution

f (t) = c1e2t + c2e3t , (c1, c2 ∈ R).

Example 12.29

Compute the general solution to the differential equation f ′′(t)− 4 f ′(t) + 4 f (t) = 0.

Answer: The characteristic polynomial of the differential equation is Z2 − 4Z + 4, which has
discriminant zero. More precisely, it has 2 as a root with multiplicity two. Equation (12-16)
then implies that the general solution we are looking for is given by:

f (t) = c1e2t + c2te2t , (c1, c2 ∈ R).

Example 12.30

Compute the general solution to the differential equation f ′′(t)− 4 f ′(t) + 13 f (t) = 0.

Answer: In this case, the characteristic polynomial of the differential equation is Z2− 4Z+ 13,
which has a negative discriminant, namely D = (−4)2 − 4 · 13 = −36. Hence the character-
istic polynomial has two non-real roots, which turn out to be 2 + 3i and 2− 3i. According to
(12-15) the wanted general solution is:

f (t) = c1e2t cos(3t) + c2e2t sin(3t) , (c1, c2 ∈ R).

Finally, we give examples of inhomogeneous, linear, second-order ODEs.
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Example 12.31

Compute the general solution to the following differential equations:

1. f ′′(t) − 5 f ′(t) + 6 f (t) = t. It is given that there exists a particular solution of the form
f (t) = at + b with a, b ∈ R.

2. f ′′(t)− 4 f ′(t) + 4 f (t) = et. It is given that f (t) = et is a solution.

3. f ′′(t)− 4 f ′(t) + 13 f (t) = 1. It is given that there exists a solution of the form f (t) = a with
a ∈ R.

Answer:

Using Corollary 12.26 and the previous examples, it is enough to find a particular solution to
each of the differential equations.

1. Let us try to find a particular solution of the form f (t) = at + b, with a, b ∈ R. Inserting
this in the differential equation, we see that 0 − 4a + 4(at + b) = t. Hence 4a = 1 and
−4a + 4b = 0. We see that f (t) = t/4 + 1/4 is a particular solution. Using Example 12.28
and Corollary 12.26, we conclude that the general solution is given by:

f (t) =
t
4
+

1
4
+ c1e2t + c2e3t , (c1, c2 ∈ R).

2. Since we are given a particular solution, we can find the general solution directly from
Example 12.29 using Corollary 12.26. The result is:

f (t) = et + c1e2t + c2te2t , (c1, c2 ∈ R).

3. First we find a particular solution of the form f (t) = a. Inserting this in the differential
equations, we see that 0 − 4 · 0 + 13a = 1 and therefore f (t) = 1/13 is a particular solu-
tion. Now similarly as before, combining this particular solution and the general solution for
the corresponding homogeneous ODE given in Example 12.30, we find the desired general
solution to the given inhomogeneous equation:

f (t) =
1
13

+ c1e2t cos(3t) + c2e2t sin(3t) , (c1, c2 ∈ R).
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