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Note 1

Propositional logic

Welcome! In these notes we want to show you various aspects of mathematics. You have all had
mathematics before, but now you started at DTU. Therefore, we will make sure that the
mathematics you already know will become sharper tools in your mind and of course teach you
a lot of new mathematics as well. A very important reason for this is that you all will need
mathematics in one way or another later in your studies. However, another reason is that
mathematics acts as a universal language in the natural sciences and that mathematics will
enable you to interact with other engineers and scientists. We also hope that we will convince
you that mathematics is beautiful. So let us begin!

1.1 Prologue: A logic problem on labels and jars

Mathematics is all about solving problems involving objects like sets, functions, num-
bers, derivatives, integrals, and so on. The goal of this chapter is to train and enhance
your problem solving skills in general, by explaining you some tools from mathemati-
cal logic. To identify and motivate these tools, we consider as an example the following
problem:

Example 1.1

Problem: Given are three jars. You cannot see what is inside the bottles, but they are labelled
with “Apples”, “Both” and “Pears”. The label “Both” simply means that the jar contains both
apples and pears. However, the problem is that someone switched the labels in such a way
that no label is on the right jar anymore. In other words: We know that for any jar, it holds
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that its label is “Apples” or “Both” or “Pears”. Also we know that currently all labels are
wrong, which implies that the left jar has true label “Both” or “Pears”, the middle jar has true
label “Apples” or “Pears”, while the right jar has true label “Apples” or “Both”.

To figure out where the labels really should be placed, you can draw fruit from each jar. How
many times would you need to draw from the jars in order to figure out where the labels
were originally?

Apples Both Pears

We will solve this puzzle later, but feel free to think about it already now!

1.2 Getting started with propositional logic

Now the point of the puzzle with the jars and labels is not that it is ground breaking
mathematics, but that thinking about it identifies several key ingredients that are more
generally useful when thinking about a mathematical problem. One uses words like
“and”, “or”, “not”, “if ... then” when attacking problems of this sort. Let us therefore
introduce some notation from what is known as propositional logic. First of all, it is prac-
tical to formulate short statements that can be either true or false. An example of this is:
the label of jar number one is “Apples”. We will call such a statements a logical proposi-
tion. Here are three more examples of such propositions: x = 10, 1 < y, a ̸= p. We will
typically use variables like P, Q and so on, to denote such propositions. Saying that a
proposition can be true of false, is more formally stated as: P can take the value T (T for
True), or the value F (F for false). It is also common to use the number 1 instead of T and
0 instead of F, but we will stick to T and F.

Sometimes a proposition can be broken into smaller, simpler ones. For example, the
proposition ‘x = 10 and 1 < y’, consists of the two simpler propositions ‘x = 10’, ‘1 < y’
combined with the word ‘and’. In propositional logic, one writes (x = 10) ∧ (1 < y).
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To be very precise on what ∧ means, let us describe exactly when an expression of the
form P ∧Q is true. We will do this in the following definition

Definition 1.2

Let P and Q be two propositions. Then P ∧ Q, pronounced as P and Q, is true
precisely if P is true and Q is true. In table form:
P Q P ∧Q
T T T
T F F
F T F
F F F

The table in this definition is called a truth table for the logical proposition P ∧ Q. Since
P ∧ Q contains two variables P and Q and both can take the value T and F indepen-
dently, the truth table of P ∧ Q should handle four cases, one in each row. Each row
describes what happens if P and Q take specific values. Other logical propositions can
also have a truth table. Here is one more example:

Example 1.3

Let P, Q, R be three logical propositions. Now consider the logical proposition P ∧ (Q ∧ R).
We have put parentheses around Q ∧ R to clarify that we consider P combined with Q ∧ R
using ∧. The logical proposition (P∧Q)∧ R may look similar, but is strictly speaking not the
same as P ∧ (Q ∧ R)!

To determine when P∧ (Q∧R) is true and when it is false, we use Definition 1.2 and compute
its truth table. Since we have three variables now, the truth table will contain eight rows: one
row for each possible value taken by P, Q, and R. Therefore the table starts like this:

P Q R

T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F
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Since P ∧ (Q ∧ R) consists of P and Q ∧ R, it is convenient to first add a column concerning
Q ∧ R. Using Definition 1.2, we then obtain:

P Q R Q ∧ R

T T T T
T T F F
T F T F
T F F F
F T T T
F T F F
F F T F
F F F F

Indeed, even though in Definition 1.2 the logical propositions were called P and Q, we can
also apply it for the logical proposition Q and R. Next we add a column for P ∧ (Q ∧ R).
Suppose for example that P, Q, R take the values F, T, T. In that case, we see from the column
that we have just computed, that Q ∧ R takes the value T. But then applying Definition 1.2
for the logical proposition P and Q∧ R, we see that P∧ (Q∧ R) takes the value F. Continuing
like this, we can compute the final column for P ∧ (Q ∧ R) and complete the truth table:

P Q R Q ∧ R P ∧ (Q ∧ R)

T T T T T
T T F F F
T F T F F
T F F F F
F T T T F
F T F F F
F F T F F
F F F F F

We can think of ∧ as a logical operator: given two logical propositions P and Q, no
matter how complicated P and Q already are, it produces a new propositions P ∧Q. In
this light ∧ is sometimes called the conjunction and P∧Q called the conjunction of P and
Q. Let us now introduce more logical operators. In Example 1.1, we knew that all labels
were wrong initially. Hence, the first jar on the left does not have label “Apples”. This
means that it has label “Both” or “Pears”. This is formalized in the next definition:
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Definition 1.4

Let P and Q be two propositions. Then P ∨ Q, pronounced as P or Q, is defined by
the following truth table:
P Q P ∨Q
T T T
T F T
F T T
F F F

The operator ∨ is called disjunction and P∨Q the disjunction of P and Q. A further log-
ical operator is the negation of a logical proposition. We have already used this as well
in Example 1.1. There we said that the labels were wrong. In particular we know that
the true label of the middle jar was not “Both”. Also a proposition like x ̸= 0 is simply
the negation of the proposition x = 0. We now formally define the negation operator.

Definition 1.5

Let P be a proposition. Then ¬P, pronounced as not P, is defined by the following
truth table:
P ¬P
T F
F T

As operator, ¬ is called the negation, and ¬P is therefore also called the negation of P.
We now already have enough ingredients to create various logical propositions. Let us
consider an example.
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Example 1.6

Consider the logical proposition P ∨ (Q ∧ ¬P). We determine its truth table. Having only
two variables P and Q, it is enough to consider four rows. Further P ∨ (Q ∧ ¬P) contains
the simpler proposition Q ∧ ¬P, which in turn contains the proposition ¬P. Therefore, when
computing the truth table of P ∨ (Q ∧ ¬P), it makes sense to add a column for ¬P and one
for Q ∧ ¬P. Then the result is the following:

P Q ¬P Q ∧ ¬P P ∨ (Q ∧ ¬P)

T T F F T
T F F F T
F T T T T
F F T F F

Note that the truth table of P∨Q from Definition 1.4 is identical to that of P∨ (Q∧¬P). To be
more precise, if we take the three columns of the truth table we just computed corresponding
to P, Q and P ∨ (Q ∧ ¬P), then we get precisely the same table as the truth tabel from Def-
inition 1.4. Apparently, two different looking logical propositions, can have the same truth
tables.

1.3 Logical consequence and equivalence

The logical operators we introduced so far, ¬, ∧, and ∨ allow us to write down many
statements in a precise way. However, we have not discussed logical reasoning yet. We
would like to be able to say something like, if P is true, then we may conclude that Q
also is true. For example, if x > 0, then also x > −1. To formalize this, we use the
logical symbol⇒, called an implication, and write P⇒ Q.

We define it by giving its truth table.

Definition 1.7

The logical proposition P⇒ Q is defined by the following truth table:
P Q P⇒ Q
T T T
T F F
F T T
F F T

.



Note 1 1.3 LOGICAL CONSEQUENCE AND EQUIVALENCE 11

In language one often pronounces P ⇒ Q as “P implies Q” or “if P then Q”. It is
sometimes convenient to write the logical proposition P⇒ Q as Q⇐ P.

There are two special types of logical propositions that are simply denoted by T and
F. The logical proposition T simply stands for a statement that is always true, like
for example the statement 5 = 5. Such a logical proposition is called a tautology. By
contrast, the logical proposition F, stands for a statement that is always false, like for
example 5 ̸= 5. This is called a contradiction. Going back to implications, saying that
P ⇒ Q is always true, really means that we claim that P ⇒ Q is a tautology. In other
words, if P⇒ Q is a tautology, then necessarily, P is true implies that Q is true as well.

If P⇒ Q is a tautology, then one says that Q is a logical consequence of P, or alternatively
that Q is implied by P. This explains why the symbol⇒ is called an implication.

Stronger than an implication is what is known as a bi-implication, denoted by ⇔ and
defined as:

Definition 1.8

The logical proposition P ⇔ Q, pronounced as “P if and only if Q”, is defined by
the following truth table:
P Q P⇔ Q
T T T
T F F
F T F
F F T

.

The phrase “P if and only if Q” for the logical proposition P ⇔ Q can be broken up in
two parts “P if Q” and “P only if Q”. The first part, “P if Q” is just a way of saying
that P ⇐ Q, while “P only if Q” boils down to the statement P ⇒ Q. This explains
that name bi-implication for the symbol⇔: it in fact combines two implications in one
symbol. We will see later in Theorem 1.15, equation (1-22) in a more formal way that a
bi-implication can indeed in this way be expressed as two implications.

Example 1.9

In Example 1.6 we noted that the truth tables of P ∨ Q is identical to that of P ∨ (Q ∧ ¬P).
What does this mean for the truth table of the logical proposition (P∨Q)⇔ (P∨ (Q∧¬P))?
Using Definition 1.4 and Example 1.6, we see that the following table is correct:
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P Q P ∨Q P ∨ (Q ∧ ¬P)

T T T T
T F T T
F T T T
F F F F

Now let us add a column to this table for the logical proposition (P ∨ Q) ⇔ (P ∨ (Q ∧ ¬P))
and use Definition 1.8. We obtain:

P Q P ∨Q P ∨ (Q ∧ ¬P) (P ∨Q)⇔ (P ∨ (Q ∧ ¬P))

T T T T T
T F T T T
F T T T T
F F F F T

Since the rightmost column only contains T, we can conclude that (P∨Q)⇔ (P∨ (Q∧¬P))
is a tautology.

The point now is that if R ⇔ S is a tautology for some, possibly complicated, logical
propositions R and S, then the truth tables of R and S are the same. In other words: if
R is true, then S is true as well, but also the converse holds: if S is true, then R is true as
well. Therefore, if R ⇔ S is a tautology, one says that the logical propositions R and S
are logically equivalent. From Example 1.9, we can conclude that the logical propositions
P ∨ Q and P ∨ (Q ∧ ¬P) are logically equivalent. The point of this example is that it
shows that sometimes one can rewrite a logical statement in a simpler form. There
are several convenient tautologies that can be used to rewrite logical propositions in a
simpler form. We start by giving some involving conjunction, disjunction and negation.
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Theorem 1.10

Let P, Q and R be logical propositions. Then all the following expressions are tau-
tologies.

P ∧ P ⇔ P (1-1)
P ∨ P ⇔ P (1-2)
P ∨Q ⇔ Q ∨ P (1-3)
P ∧Q ⇔ Q ∧ P (1-4)

P ∨ (Q ∨ R) ⇔ (P ∨Q) ∨ R (1-5)
P ∧ (Q ∧ R) ⇔ (P ∧Q) ∧ R (1-6)
P ∧ (Q ∨ R) ⇔ (P ∧Q) ∨ (P ∧ R) (1-7)
P ∨ (Q ∧ R) ⇔ (P ∨Q) ∧ (P ∨ R) (1-8)

Proof. To prove that one of the mentioned logical proposition is a tautology, we compute
a truth table for it. Doing this for all of them would fill quite a few pages, but let us
consider one of them, namely (1-6). We need to show that P∧ (Q∧ R)⇔ (P∧Q)∧ R is
a tautology. In Example 1.3, we already computed the truth table of P ∧ (Q ∧ R), so we
do not have to redo that here. What we will need to do is to compute the truth table of
(P ∧ Q) ∧ R, in a way similar to what we did for P ∧ (Q ∧ R) in Example 1.3, and then
in the last step compute the truth table of P ∧ (Q ∧ R) ⇔ (P ∧ Q) ∧ R using Definition
1.8. The result is the following:

P Q R P ∧ (Q ∧ R) P ∧Q (P ∧Q) ∧ R P ∧ (Q ∧ R)⇔ (P ∧Q) ∧ R
T T T T T T T
T T F F T F T
T F T F F F T
T F F F F F T
F T T F F F T
F T F F F F T
F F T F F F T
F F F F F F T

We see that P ∧ (Q ∧ R) ⇔ (P ∧ Q) ∧ R only takes the value T, no matter what values
P, Q and R take. Hence we can conclude that P∧ (Q∧ R)⇔ (P∧Q)∧ R is a tautology.

All the other items in the theorem can be shown similarly, but we will not do so here.
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Readers are encouraged to prove at least one other item themselves.

Equation (1-5) really says that when taking the disjunction of three logical propositions,
it does not matter how you place the parentheses. Therefore, it is common to write
P ∨ Q ∨ R and leave the parentheses out completely. Similarly Equation (1-6) says that
for the conjunction of three logical propositions, you can place the parentheses as you
want. Therefore, on can write P ∧Q ∧ R without any ambiguity. This situation changes
if both conjunction and disjunction occur in the same expression. Then parentheses do
matter. We consider an example.

Example 1.11

Consider the logical propositions (P ∧ Q) ∨ R and P ∧ (Q ∨ R). We claim that these are not
logically equivalent. To show this, we could compute their truth tables, but in fact to show
that two logical propositions are not logically equivalent, all we need to do is to find values
for P, Q and R such that (P ∧ Q) ∨ R and P ∧ (Q ∨ R) are not both true. Let us for example
find out when (P ∧ Q) ∨ R is false. This happens precisely if P ∧ Q is false and R is false.
Hence (P ∧ Q) ∨ R is false precisely if P and Q are not both true and R is false. However,
P ∧ (Q ∨ R) will be false whenever P is false. Hence if (P, Q, R) take the values (F, T, T), then
(P ∧ Q) ∨ R is true, but P ∧ (Q ∨ R) is false. This means that in the truth table of the two
expressions, there is a row looking as follows:

P Q R . . . (P ∧Q) ∨ R P ∧ (Q ∨ R)
...
F T T . . . T F
...

Hence the logical propositions (P ∧ Q) ∨ R and P ∧ (Q ∨ R) are not logically equivalent.
Indeed, if they would be, the logical proposition (P ∧ Q) ∨ R ⇔ P ∧ (Q ∨ R) would be a
tautology and hence only take the value T, but its truth table actually contains the following
row:

P Q R . . . (P ∧Q) ∨ R P ∧ (Q ∨ R) (P ∧Q) ∨ R⇔ P ∧ (Q ∨ R)
...
F T T . . . T F F
...

There are a few more tautologies that are useful when dealing with logical propositions.
Apart from the conjunction ∧ and disjunction ∨, these also involve the negation ¬. We
leave the proofs to the reader.
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Theorem 1.12

Let P, Q and R be logical propositions. Then all the following expressions are tau-
tologies.

P ∨ ¬P ⇔ T (1-9)
P ∧ ¬P ⇔ F (1-10)

P ⇔ ¬(¬P) (1-11)
¬(P ∨Q) ⇔ ¬P ∧ ¬Q (1-12)
¬(P ∧Q) ⇔ ¬P ∨ ¬Q (1-13)

¬T ⇔ F (1-14)
¬F ⇔ T (1-15)

Identities (1-12) and (1-13) are called the De Morgan’s laws. Finally, there are a few tau-
tologies describing how ∧ and ∨ interact with tautologies and contradictions. Again,
we leave the proofs of these to the reader.

Theorem 1.13

Let P, Q and R be logical propositions. Then all the following expressions are tau-
tologies.

P ∨ F ⇔ P (1-16)
P ∧ T ⇔ P (1-17)
P ∧ F ⇔ F (1-18)
P ∨ T ⇔ T (1-19)

Using the list of tautologies in Theorems 1.10, 1.12 and 1.13 one can rewrite logical
proposition in a logically equivalent form. Let us consider an example.

Example 1.14

As in Examples 1.6 and 1.9, consider the logical proposition P ∨ (Q ∧ ¬P). We have already
seen that it is logically equivalent to P ∨Q, but let us now show this using Theorem 1.10 and
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not by computing truth tables. First of all, using (1-8), we see that

P ∨ (Q ∧ ¬P)⇔ (P ∨Q) ∧ (P ∨ ¬P).

Using (1-9), we conclude that

P ∨ (Q ∧ ¬P)⇔ (P ∨Q) ∧ T,

which by (1-17) can be simplified to

P ∨ (Q ∧ ¬P)⇔ P ∨Q.

In other words, using Theorem 1.10, one can prove logical equivalences without having to
compute truth tables. Of course when proving this theorem, one needs to compute several
truth tables, but this only needs to be done once. Generally speaking in mathematics, the
point of a theorem is that it contains one or several useful results with a proof. Once the
proof is given, one can use the result in the theorem whenever needed without having to
prove the theorem again.

The tautologies in Theorem 1.10 only involve negation, conjunction and disjunction.
Here are three very useful ones that involve implication and bi-implication as well.

Theorem 1.15

Let P and Q be logical propositions. Then all the following expressions are tautolo-
gies.

(P⇒ Q) ⇔ (¬P ∨Q) (1-20)
(P⇒ Q) ⇔ (¬Q⇒ ¬P) (1-21)
(P⇔ Q) ⇔ (P⇒ Q) ∧ (Q⇒ P) (1-22)

P ⇔ (¬P⇒ F) (1-23)

Proof. As in Theorem 1.10, these items can be shown by computing truth tables for each
of them. We will do this for the second item and leave the others to the reader:
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P Q P⇒ Q ¬P ¬Q ¬Q⇒ ¬P (P⇒ Q)⇔ (¬Q⇒ ¬P)
T T T F F T T
T F F F T F T
F T T T F T T
F F T T T T T

Since the right column only contains T, we conclude that (P ⇒ Q) ⇔ (¬Q ⇒ ¬P)
indeed is a tautology.

Equation (1-20) means that in principle, an implication can be expressed using negation
and disjunction. Equation (1-21) is called contraposition. It means that if one wants to
prove that Q is a logical consequence of P, it is also fine to show that ¬P is a logical
consequence of ¬Q. Equation (1-22) says that two logical propositions are logically
equivalent precisely if they are logical consequences of each other. Finally, equation
1-23 is sometimes used to prove logical statements: instead of showing that P is true,
one assumes that P is false and then tries to obtain a contradiction. If one does obtain
a contradiction, one can conclude that ¬P ⇒ F is true. But then by equation 1-23, P is
also true. This method is called a proof by contradiction.

1.4 Use of logic in mathematics

Logic can help to solve mathematical problems and to clarify the mathematical reason-
ing. In this section, we give a number of examples of this.

Example 1.16

Question: Determine all real numbers x such that −x ≤ 0 ≤ x− 1.

Answer: −x ≤ 0 ≤ x− 1 is really shorthand for the logical proposition

−x ≤ 0 ∧ 0 ≤ x− 1.

The first inequality is logically equivalent to the inequality x ≥ 0, while the second one is
equivalent to x ≥ 1. Hence a real number x is a solution if and only if

x ≥ 0 ∧ x ≥ 1.

The answer is therefore all real numbers x such that x ≥ 1.
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Example 1.17

Question: determine all real numbers x such that 2|x| = 2x + 1. Here |x| denotes the absolute
value of x.

Answer: if x < 0, then |x| = −x, while if x ≥ 0, then |x| = x. Hence it is convenient
to consider the cases x < 0 and x ≥ 0 separately. More formally, we have the following
sequence of logically equivalent statements:

2|x| = 2x + 1
⇔
2|x| = 2x + 1 ∧ (x < 0 ∨ x ≥ 0)
⇔
(2|x| = 2x + 1 ∧ x < 0) ∨ (2|x| = 2x + 1 ∧ x ≥ 0)
⇔
(−2x = 2x + 1 ∧ x < 0) ∨ (2x = 2x + 1 ∧ x ≥ 0)
⇔
(−4x = 1 ∧ x < 0) ∨ (0 = 1 ∧ x ≥ 0)
⇔
(x = −1/4 ∧ x < 0) ∨ (F ∧ x ≥ 0)
⇔
x = −1/4 ∨ F
⇔
x = −1/4

Hence the only solution to the equation 2|x| = 2x + 1 is x = −1/4.

Example 1.18

Question: Determine all nonnegative real numbers such that
√

x = −x.

Observation: It is tempting to take the square on both sides, one then obtains x = x2, and
then to conclude that x = 0 and x = 1 are the solutions to the equation

√
x = −x. However,

x = 0 is indeed a solution, but x = 1 is not, since
√

1 ̸= −1. What went wrong?

Answer: The reasoning actually shows that if x satisfies the equation
√

x = −x, then x = x2,
which in turn implies that x = 0 or x = 1. Hence the following statement is completely
correct:

(
√

x = −x)⇒ (x = 0∨ x = 1).

In that sense, nothing went wrong and any solution to the equation
√

x = −x must indeed
be either x = 0 or x = 1. What may cause confusion is that this does not at all mean that



Note 1 1.5 EPILOGUE: THE LOGIC PROBLEM ON LABELS AND JARS 19

x = 0 and x = 1 both are solutions to the equation
√

x = −x. This would namely amount to
the statement

(x = 0∨ x = 1)⇒ (
√

x = −x),

which is different from what we have shown and actually is not true. To solve the question,
all we need to do it to check if the potential solutions x = 0 and x = 1 really are solutions.
We then obtain that x = 0 is the only solution.

1.5 Epilogue: the logic problem on labels and jars

Let us return to the problem of jars and labels from the first section.

Example 1.19

Let us denote by P1(A) the statement that the left jar has true label “Apples”. Similarly,
let us write P1(B), respectively P1(P), for the statement that the left jar has true label “Both”,
respectively “Pears”. We then know that P1(B)∨ P1(P) is always true, since the left jar cannot
have label “Apples”. Similarly for the middle jar, we can introduce P2(A), P2(B), and P2(P)
for the statements that the middle jar has true label “Apples”, “Both”, “Pears” and conclude
that P2(A) ∨ P2(P) is a tautology. Similarly for the right jar, we obtain that P3(A) ∨ P3(B) is a
tautology. In conclusion,

(P1(B) ∨ P1(P)) ∧ (P2(A) ∨ P2(P)) ∧ (P3(A) ∨ P3(B)) (1-24)

is a tautology. Using equation (1-7) repeatedly, we can rewrite this to the logically equivalent
statement

(P1(B) ∧ P2(A) ∧ P3(A)) ∨ (P1(B) ∧ P2(A) ∧ P3(B)) ∨
(P1(B) ∧ P2(P) ∧ P3(A)) ∨ (P1(B) ∧ P2(P) ∧ P3(B)) ∨
(P1(P) ∧ P2(A) ∧ P3(A)) ∨ (P1(P) ∧ P2(A) ∧ P3(B)) ∨
(P1(P) ∧ P2(P) ∧ P3(A)) ∨ (P1(P) ∧ P2(P) ∧ P3(B)).

This statement is still a tautology, since it is logically equivalent to the tautology from Equa-
tion 1-24. Since we know that in the correct labelling each label has to be used exactly once,
a statement like P1(B) ∧ P2(A) ∧ P3(A) where the same label occurs twice, cannot be correct,
that is to say that it is a contradiction. Using that disjunction absorbs contradictions, see
Equation (1-16), we therefore conclude that

(P1(B) ∧ P2(P) ∧ P3(A)) ∨ (P1(P) ∧ P2(A) ∧ P3(B)) (1-25)

is a tautology.
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What this shows is that there are only two possible correct ways to label the jars. This is
already very helpful, since we did not even draw any fruit yet! Now let us investigate what
the effect of drawing from a jar is. If we draw from the left jar, we do not learn much about the
label of that jar. Indeed, since the true label is “Both” or “Pears”, if we draw an apple from
it, we know the true label cannot be “Pears”, but if we draw a pear from it, the true label
could still be “Both” or “Pears”. Similarly drawing from the right jar, may not determine its
true label. The situation is different for the middle jar. Since the true label of the middle jar is
“Apples” or “Pears”, if we draw an apple from it, its true label cannot be “Pears”. Apparently,
it must be “Apples” in that case. Similarly, if we draw a pear from the middle jar, its true label
is “Pears”. We arrive at the following solution for the problem:

Solution:

Step 1: Draw from the middle jar. Since we know all labels are wrong, the middle jar, that
has label “Both”, contains either only apples, or only pears. If we draw an apple from the
middle jar, then we can conclude the correct label should have been “Apples,” while if we
draw a pear from the middle jar, then we can conclude that that correct label should have
been “Pears”.

Step 2: We know that the logical proposition in Equation 1-25 is a tautology. This implies
that if we found in Step 1 that the correct label for the middle jar is “Apples”, then P1(P) ∧
P2(A) ∧ P3(B) is true, while if the correct label of the middle jar was identified as “Pears” in
Step 1, then P1(B) ∧ P2(P) ∧ P3(A) is true.

Conclusion: We only need to draw once! After that we can identify all three labels correctly.
Moreover, we have actually found a simple step-by-step procedure to determine the correct
labelling. This is an example of what we later will call an algorithm. To make it look more
like a computer algorithm, we give it as follows:

Algorithm 1 Label Identifier
1: Draw from the jar labelled “Both” and denote the result by R.
2: if R = apple then
3: Identify the labels of the jars as “Pears”,“Apples”,“Both”,
4: else
5: Identify the labels of the jars as “Both”,“Pears”,“Apples”.

There are many puzzles of this type. Here is another one. Feel free to try to solve it
yourself before reading the solution.
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Example 1.20

A police officer is investigating a burglary and was able to narrow the number of suspects
down to three. He is absolutely sure that one of these three committed the crime and that
the perpetrator worked alone. His questioning of the three suspects yields him the following
statements:

Suspect1: “Suspect2 did it”;
“I wasn’t there”;
“I am innocent”

Suspect2: “Suspect3 is innocent”;
“everything Suspect 1 said is a lie”;
“I didn’t do it”

Suspect3: “I didn’t do it”;
“Suspect1 is lying if he said that he wasn’t there”;
“Suspect2 is lying if he said that everything that Suspect1 said is a lie”

Confused, the police officer goes to his boss, the police commissioner. The police commis-
sioner says: “I know these suspects quite well and every single one of them always lies at
least once in their statements.” Can you help the police officer to figure out which suspect is
guilty of the burglary?

Solution Let us introduce some logical proposition to analyze the situation. First of all, P1 is
the statement “Suspect1 did it” and similarly P2 stands for “Suspect2 did it”, P3 for “Suspect3
did it”. With this notation in place, we know that

P1 ∨ P2 ∨ P3

is a tautology, since the police officer is absolutely sure that one of the three suspects commit-
ted the burglary.

Now let us analyze the statements from the suspects:

Statements from Suspect1:
“Suspect2 did it”; this is just P2

“I wasn’t there”; we call this R1

“I am innocent”; this amounts to ¬P1

Now let us consider the insight from the police commissioner. He says that any of the three
suspects has lied at least once in their statements. In particular, Suspect1 is lying, which
means that ¬P2 ∨ ¬R1 ∨ ¬(¬P1) is a tautology. Using Equation (1-11), we conclude that

¬P2 ∨ ¬R1 ∨ P1
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is a tautology.

Statements from Suspect2:
“Suspect3 is innocent”; this is ¬P3

“everything Suspect 1 said is a lie”; this amount to ¬P2 ∧ ¬R1 ∧ P1

“I didn’t do it”; this is ¬P2

Now let us again consider the insight from the police commissioner. For Suspect 2 we ob-
tain that P3 ∨ ¬(¬P2 ∧ ¬R1 ∧ P1) ∨ P2 is a tautology. One can simplify this expression us-
ing Theorem 1.10. First of all, using Equation (1-13), the proposition ¬(¬P2 ∧ ¬R1 ∧ P1)

is logically equivalent to ¬(¬P2) ∨ ¬(¬R1) ∨ ¬P1), which in turn is logically equivalent to
P2 ∨ R1 ∨ ¬P1 using Equation (1-11). Substituting this in the original tautology, we see that
P3 ∨ (P2 ∨ R1 ∨ ¬P1) ∨ P2 is a tautology. Simplifying P2 ∨ P2 to P2 using Equation (1-2), we
obtain that

P3 ∨ P2 ∨ R1 ∨ ¬P1

is a tautology.

The statements of Suspect3 are a bit involved, so before putting them in a table, let us consider
the last two statements. The second statement of Suspect3 is that “Suspect1 is lying if he
said that he wasn’t there”. In other words: “Suspect1 wasn’t there” ⇒ “Suspect1 is lying”.
However, the police commissioner already told us that the statement “Suspect1 is lying”
always is true. This means that the implication, “Suspect1 wasn’t there” ⇒ “Suspect1 is
lying”, is a tautology. Similarly, the third statement from Suspect3, “Suspect2 is lying if he
said that everything that Suspect1 said is a lie”, is a tautology. Hence the second and third
statements from Suspect3 do not give us any information that we did not already know.

Statements from Suspect3:
“I didn’t do it”; this is ¬P3

“Suspect1 is lying if he said that he wasn’t there”; this is a tautology T
“Suspect2 is lying if he said that everything that Suspect1 said is a lie; this is a tautology T

Now let us for the third time consider the insight from the police commissioner. Suspect3
lied and hence P3 ∨ ¬T∨ ¬T is a tautology. Since ¬T is logically equivalent to F by Equation
1-14, Equation (1-16) implies that P3 is a tautology.

Collecting everything together, we have obtained the following tautologies: P1 ∨ P2 ∨ P3,
¬P2 ∨¬R1 ∨ P1, P3 ∨ P2 ∨R1 ∨¬P1, P3. The fact that P3 is a tautology immediately implies that
the only possibility is that Suspect3 has committed the burglary and that as a consequence
Suspect1 and Suspect2 are innocent. However, we still need to check that in this case all the
other tautologies are indeed true. If not, this would mean that no solution exists and that the
police officer or the police commissioner is wrong. First of all, if P3 takes the value T, then
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P1 ∨ P2 ∨ P3 and P3 ∨ P2 ∨ R1 ∨ ¬P1 will be tautologies, since T∨ S is logically equivalent to T
for any logical proposition S. This leaves ¬P2 ∨¬R1 ∨ P1. Since Suspect2 is innocent, P2 takes
the value F and as a consequence, ¬P2 takes the value T. Hence indeed ¬P2 ∨ ¬R1 ∨ P1 is a
tautology. This means that there is nothing contradictory. The police should arrest Suspect3!
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Note 2

Sets and functions

2.1 Sets

The notion of a set is very fundamental in mathematics and therefore we will discuss
some terminology and notation concerning sets in this section.

Basically, a set A is a way to “bundle” elements together in one object. If we for example
want to write down a set consisting of the numbers 0 and 1, we simply write {0, 1}. This
would be an example of a set with two elements. Elements do not have to be numbers,
but could in principle be anything. Repetition of elements does not make a set larger in
the sense that if an element occurs twice or more times in a set, all its duplicates can be
removed. For example, one has {0, 0, 1} = {0, 1} and {1, 1, 1, 1} = {1}. Also the order
in which the elements of a set are written down is not important. Hence for example
{0, 1} = {1, 0}.

Some sets of numbers are used so often, that there is a standard notation for them:

N = {1, 2, . . . } the set of natural numbers,
Z = {. . . ,−2,−1, 0, 1, 2, . . . } the set of integers,

and
R the set of all real numbers.

Saying that a is an element of A is expressed as: a ∈ A. Some authors prefer to write
the set first and then the element, writing A ∋ a instead of a ∈ A. If an element a is not
in the set A, one can use the negation from propositional logic and write ¬(a ∈ A). It
is also common though to write a ̸∈ A for the statement that a is not an element of the
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set A. If two elements are in the same set, say a1 ∈ A and a2 ∈ A, it is common to write
a1, a2 ∈ A.

Example 2.1

We have 1 ∈ N and −1 ∈ Z, while −1 ̸∈ N. Further π ∈ R, but π ̸∈ Z, since π ≈ 3.1415 is
not an integer.

A set is determined by its elements, meaning that two sets A and B are equal, A = B,
if and only if they contain the same elements. In other words A = B if and only if for
all elements a, it holds that a ∈ A ⇔ a ∈ B. If A and B are sets, then B is called
a subset of A, if any element of B is also an element of A. A common notation for this
is B ⊆ A. In other words, the statement B ⊆ A is by definition true if and only if the
statement a ∈ B ⇒ a ∈ A is true for all elements a. In particular A ⊆ A, since for all a
the implication a ∈ A ⇒ a ∈ A is true. Instead of writing B ⊆ A, one may also write
A ⊇ B.

The empty set is the set not containing any elements at all. It is commonly denoted by
∅, inspired by the letter Ø from the Danish and Norwegian alphabet. Some authors use
{} for the empty set, but we will always use the notation ∅ for it. The empty set ∅ is a
subset of any other set A.

If one wants to stress that a set B is a subset of A, but not equal to all of A, one writes
B ⊊ A or alternatively A ⊋ B. Finally, if you want to express in a formula that B is not a
subset of A, it is possible to use the logical negation symbol ¬ and write that ¬(B ⊆ A),
but it is more customary to write B ̸⊆ A or alternatively A ̸⊇ B.

Example 2.2

Since every natural number is an integer, we have N ⊆ Z. Every integer n ∈ Z is also a real
number. Therefore Z ⊆ R. In fact, we even have N ⊊ Z and Z ⊊ R. Indeed to show N ⊊ Z,
we just have to check that N ⊆ Z (which we already observed) and that N ̸= Z. However,
since −1 ∈ Z, but −1 ̸∈ N, we can indeed conclude that N ̸= Z. Similarly Z ⊊ R, since
π ∈ R and π ̸∈ Z.

A common way to construct subsets of a set A is by selecting elements from it for which
some logical expression is true. For the sake of notation, let us denote this logical ex-
pression by P(a). Then {a ∈ A | P(a)} denotes the subset of A consisting of precisely
those elements a ∈ A for which the logical expression P(a) is true.
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Example 2.3

Let Z as before be the set of integers. Then {a ∈ Z | a ≥ 1} is just the set {1, 2, 3, 4, . . . } and
{a ∈ Z | a ≤ 3} = {. . . ,−1, 0, 1, 2, 3}. Also {a ∈ Z | 1 ≤ a ≤ 3} = {1, 2, 3}.

Example 2.4

Apart from the standard notations N, Z and R that we already introduced, a further example
is the set Q: the set of all rational numbers, that is to say, the set of fractions of integers. More
precisely we have

Q =
{ a

b
| a, b ∈ Z, b ̸= 0

}
.

This simply means that an element of Q is of the form a/b, where both a and b are integers,
where b is not zero. Note that fractions like 1/2 and 2/4 are the same, since 2/4 can be
simplified to 1/2 by dividing both numerator and denominator by 2. More generally, two
fractions a/b and c/d are the same if and only if ad = bc.

Since any integer n ∈ Z can be written as n/1, we see that Z ⊆ Q. In fact, since 1/2 ∈ Q

and 1/2 ̸∈ Z, we have Z ⊊ Q. Further, any fraction of integers is a real number, so that
Q ⊆ R. It turns out that Q ⊊ R. A way to see this is to find a real number that cannot
be written as a fraction of integers. One example of such a real number is

√
2, but we

will not show here why
√

2 ̸∈ Q.

Given two real numbers a and b such that a < b, one can define several standard subsets
of R called intervals. These are:

[a, b] = {x ∈ R | a ≤ x ≤ b},

[a, b[= {x ∈ R | a ≤ x < b},

]a, b] = {x ∈ R | a < x ≤ b}

and
]a, b[= {x ∈ R | a < x < b}.

Intervals of the form [a, b] are called closed , while intervals of the form ]a, b[ are called
open.

It is also customary to define

R≥a = {x ∈ R | x ≥ a},
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R>a = {x ∈ R | x > a},
R≤a = {x ∈ R | x ≤ a}

and
R<a = {x ∈ R | x < a}.

Example 2.5

The interval ]0, 1] consists of all real numbers x satisfying 0 < x ≤ 1. This interval is not
closed and not open either. The set R≥0 is the set of all nonnegative real numbers, while R>0

is the set of all positive real numbers. The notation R+ is also often used to denote the set of
all positive real numbers.

It is intuitive that two sets are equal if and only if they are subsets of each other. Let us
be more precise as to why this is true and state this as a lemma.

Lemma 2.6

Let A and B be two sets. Then A = B if and only if A ⊆ B and A ⊇ B.

Proof. The statement A = B for two sets A and B, is logically equivalent to the statement
a ∈ A⇔ a ∈ B for all a. Using Equation (1-22), we can split the bi-implication up in two
implications. Then we obtain the logically equivalent statement (a ∈ A ⇒ a ∈ B) ∧
(a ∈ A⇐ a ∈ B) for all a. But this is equivalent to saying that A ⊆ B ∧ A ⊇ B.

Instead of ⊆ and ⊇, some authors prefer the symbols ⊂ and ⊃. However, yet other
authors, use the symbols ⊂ and ⊃ in the meaning of ⊊ and ⊋, inspired by the use of
< and > in the setting of strict inequalities. To avoid confusion, we will not use the
symbols ⊂ or ⊃.

There are several basic definitions and operations involving sets that we will use later
on. We illustrate them in Example 2.7. Fist of all, if A and B are two sets, then we define
the intersection of A and B, denoted by A∩ B, to be the set consisting of all elements that
are both in A and in B. In other words:

A ∩ B = {a | a ∈ A ∧ a ∈ B}. (2-1)
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A B

A ∩ B

Two sets A and B are called disjoint, if A ∩ B = ∅.

A B

A and B disjoint

The union of A and B is defined as:

A ∪ B = {a | a ∈ A ∨ a ∈ B}. (2-2)

A B

A ∪ B

The union A ∪ B is called a disjoint union of A and B if A ∩ B = ∅.

A B

A ∪ B disjoint union of A and B
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The set difference of A and B, often pronounced as A minus B, is defined to be:

A \ B = {a | a ∈ A ∧ a ̸∈ B}.

A B

A \ B

Finally, the Cartesian product of A and B is the set:

A× B = {(a, b) | a ∈ A ∧ b ∈ B}.

In other words, the Cartesian product of two sets A and B, is simply the set of all pairs
(a, b), whose first coordinate is from A and whose second coordinate is from B. The
Cartesian product of a set A with itself is sometimes denote as A2. In other words:
A2 = A× A.

Later on we will mainly use the Cartesian product of two sets, but it is not hard to define
the Cartesian product of more than two sets. One simply uses more coordinates, one
for each set in the Cartesian product. For example A× B× C = {(a, b, c) | a ∈ A, b ∈
B, and c ∈ C}. More generally, if n is a positive integer and A1, . . . , An are sets, then

A1 × · · · × An = {(a1, . . . , an) | a1 ∈ A1, . . . , an ∈ An}.

If all sets are equal, say A1 = A, . . . , An = A, then one often writes An for their Cartesian
product. In other words

An = {(a1, . . . , an) | a1 ∈ A, . . . , an ∈ A}. (2-3)

Let us illustrate the introduced concepts for sets in an example.

Example 2.7

Let 1, 2, 3, and 4 be the first four positive integers. Then:
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1. {1, 2} ⊆ {1, 2, 3} and in fact {1, 2} ⊊ {1, 2, 3},

2. {1, 2} ⊇ {2} and in fact {1, 2} ⊋ {2},

3. {1, 4} ̸⊆ {1, 2, 3},

4. {1, 2, 3} ∩ {2, 3, 4} = {2, 3},

5. {1, 2} and {3} are disjoint sets,

6. {1, 2, 3} ∪ {2, 3, 4} = {1, 2, 3, 4},

7. {1, 2, 3, 4} is the disjoint union of {1, 2} and {3, 4},

8. {1, 2, 3} \ {2, 3, 4} = {1},

9. {2, 3, 4} \ {1, 2, 3, 4} = ∅,

10. {1, 2} × {3, 4} = {(1, 3), (1, 4), (2, 3), (2, 4)},

11. {1, 2}2 = {(1, 1), (1, 2), (2, 1), (2, 2)}.

In Equations (2-1) and (2-2), the logical opeators ∧ and ∨ came in very handy. In Theo-
rem 1.10 we have seen various properties of these two logical operators. These can now
be used to show similar properties of intersections and unions of sets:

Theorem 2.8

Let A, B and C be sets. Then

A ∩ A = A (2-4)
A ∪ A = A (2-5)
A ∪ B = B ∪ A (2-6)
A ∩ B = B ∩ A (2-7)

A ∪ (B ∪ C) = (A ∪ B) ∪ C (2-8)
A ∩ (B ∩ C) = (A ∩ B) ∩ C (2-9)
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (2-10)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (2-11)
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Proof. Let us prove the last item, that is to say Equation (2-11). Proving the remaining
items is left to the reader. According to Equation (2-1), we have

B ∩ C = {a | a ∈ B ∧ a ∈ C}.

On the other hand, applying Equation (2-2) to the sets A and B ∩ C, we see that

A ∪ (B ∩ C) = {a | a ∈ A ∨ a ∈ B ∩ C}.

Combining these two equations and using Equation 1-8, we then obtain the following:

A ∪ (B ∩ C) = {a | a ∈ A ∨ (a ∈ B ∧ a ∈ C)}
= {a | (a ∈ A ∨ a ∈ B) ∧ (a ∈ A ∨ a ∈ C)}
= {a | (a ∈ A ∪ B) ∧ (a ∈ A ∪ C)}
= (A ∪ B) ∩ (A ∪ C).

Theorem 2.8 shows that propositional logic can be used to rewrite intersections and
unions of sets. We give one example involving the difference of some sets. Here Theo-
rems 1.12 and 1.13 will come in handy.

Example 2.9

Let A, B and C be three sets. In this example we show that A ∩ (B \ C) = (A ∩ B) \ (A ∩ C).
First of all, we have

A ∩ (B \ C) = {a | a ∈ A ∧ a ∈ B \ C}
= {a | a ∈ A ∧ (a ∈ B ∧ ¬(a ∈ C))}.

On the other hand

(A ∩ B) \ (A ∩ C) = {a | a ∈ A ∩ B ∧ ¬(a ∈ A ∩ C)}
= {a | (a ∈ A ∧ a ∈ B) ∧ ¬(a ∈ A ∧ a ∈ C)}
= {a | (a ∈ A ∧ a ∈ B) ∧ (¬(a ∈ A) ∨ ¬(a ∈ C))}
= {a | (a ∈ A ∧ a ∈ B) ∧ ¬(a ∈ A) ∨ (a ∈ A ∧ a ∈ B) ∧ ¬(a ∈ C)}
= {a | F ∨ (a ∈ A ∧ a ∈ B) ∧ ¬(a ∈ C)}
= {a | (a ∈ A ∧ a ∈ B) ∧ ¬(a ∈ C)}
= {a | a ∈ A ∧ (a ∈ B ∧ ¬(a ∈ C))}.

We can conclude that indeed A ∩ (B \ C) = (A ∩ B) \ (A ∩ C).
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2.2 Functions

A very important concept in mathematics is a function. For two given sets A and B, a
function f from A to B assigns to any a ∈ A an element b ∈ B. Instead of the phrase
“assigns to a an element b” one usually just says that “ f maps a to b”. For this reason a
function is sometimes also called a map. Instead of saying that “ f maps a to b” one can
also say that “ f evaluated in a is equal to b”.

The set A is called the domain of the function, while the set B is called the co-domain.
There is a compact notation to capture all this information, namely f : A → B. The
value of a function f in a specific element a will be denoted by f (a). In words, f (a) is
often called the image of a under f or sometimes also the evaluation of f in a. Instead
of saying that f maps the value a in A to f (a), one can also briefly write a 7→ f (a). All
the notation so far for a function f can compactly be given as follows:

f : A → B
a 7→ f (a)

For example, the function sending a real number to its square can be given as:

f : R → R

x 7→ x2

A function like the previous is often also given as f : R → R, where f (x) = x2. What
is also done quite often is to simply say that the function is defined as f (x) = x2. In
such cases, it is left to the reader to figure out what the domain and the co-domain of
the function is. Whenever possible, we will clearly indicate the domain and co-domain
of functions. If the domain and the co-domain are chosen to be the same set A, one can
define the identity function idA on A. This is the function idA : A→ A such that a 7→ a.

The image of a function f : A → B is an important notion, which is defined as the set
{ f (a) | a ∈ A}. The image of a function f : A→ B is a subset of its co-domain B, but we
will see in Example 2.10 that image and co-domain do not have to be equal. Common
notations for the image of a function f : A → B are f (A) or image( f ). Let us consider
some examples:



Note 2 2.2 FUNCTIONS 33

Example 2.10

Let us again consider the function

f : R → R

x 7→ x2

This function has domain R and co-domain R. We claim that f (R) = {r ∈ R | r ≥ 0}.
In other words, we claim that f (R) = R≥0. Using Lemma 2.6, it is enough to show that
f (R) ⊆ R≥0 and R≥0 ⊆ f (R).

First of all, note that f (R) ⊆ R≥0, since the square of a real number cannot be negative.
Conversely, if r ∈ R≥0, then

√
r is defined and r = (

√
r)2 = f (

√
r). This shows that any non-

negative real number r is in the image of f . In other words, we have shown that R≥0 ⊆ f (R).
Using Lemma 2.6, we may indeed conclude that f (R) = R≥0.

This example shows that the image of a function does not have to be equal to its co-domain.

When considering the squaring function as we just did, we could of course right from
the start have defined it as f : R → R≥0, with x 7→ x2. Here the only difference is that
we changed the co-domain from R to R≥0. For this modified function the image is the
same as the co-domain, so why do we make such a distinction between the image and
the co-domain of a function in the general theory? One reason is that it is convenient
not to have to keep track of the image of a function all the time. If we know a function
maps real numbers to real numbers, we simply can set the co-domain equal to R without
worrying further. For complicated functions, it may be even be very difficult to compute
its image.

Two functions f : A → B and g : C → D are equal precisely if they have the same
domain, the same co-domain, and they assign the same values to each of the elements
of their domain A. In formulas:

f = g⇐⇒ A = C ∧ B = D ∧ f (a) = g(a) for all a ∈ A.

Example 2.11

Consider the functions

f : {0, 1} → {0, 1}
a 7→ a
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fA

x

B

f (x)

g C

g( f (x))

g ◦ f

Figure 2.1: composition of the functions f : A→ B and g : B→ C

and

g : {0, 1} → {0, 1}
a 7→ a2

The functions f and g have the same domain and co-domain. Moreover, f (0) = 0, f (1) = 1,
while g(0) = 02 = 0 and g(1) = 12 = 1. Hence f = g.

This example shows that two functions may be the same even if they are described using
different formulas.

If two functions f : A → B and g : B → C are given, it makes sense to consider the
function

h : A → C
a 7→ g( f (a))

The reason that in this definition the co-domain of the function f needs to be the same
as the domain of the function g, is to guarantee that g( f (a)) is always defined: for any
a ∈ A, we know that f (a) ∈ B, so that it indeed makes sense to use the elements f (a) as
input for the function g, since the domain of g is assumed to be B.

The function h : A → C obtained in this way is usually denoted by g ◦ f (pronounce: g
after f ) and is called the composition of g and f . Hence we have (g ◦ f )(a) = g( f (a)).
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Example 2.12

Let us denote by R>0 the set of all positive real numbers. Suppose that f : R → R>0 is
defined by f (x) = x2 + 1 and g : R>0 → R is defined by g(x) = log10(x), where log10
denotes the logarithm with base 10. Then g ◦ f : R → R is the function sending x ∈ R to
log10(x2 + 1). In other words:

g ◦ f : R → R

x 7→ log10(x2 + 1)

For example (g ◦ f )(3) = log10(3
2 + 1) = log10(10) = 1.

Lemma 2.13

Let A, B, C, and D be sets and suppose that we are given functions h : A → B,
g : B→ C, and f : C → D. Then we have ( f ◦ g) ◦ h = f ◦ (g ◦ h).

Proof. First of all note that both ( f ◦ g) ◦ h and f ◦ (g ◦ h) are functions from A to D, so
they have the same domain and codomain. To prove the lemma it is therefore enough
to show that for all a ∈ A, we have (( f ◦ g) ◦ h)(a) = ( f ◦ (g ◦ h))(a). By definition of
the composition ◦, we have

( f ◦ (g ◦ h))(a) = f ((g ◦ h)(a)) = f (g(h(a))),

while
(( f ◦ g) ◦ h)(a) = ( f ◦ g)(h(a)) = f (g(h(a))).

We conclude that for any a ∈ A it holds that ( f ◦ (g ◦ h))(a) = (( f ◦ g) ◦ h)(a), which is
what we needed to show.

The result from this lemma is usually stated as: composition of functions is an associative
operation. Because of Lemma 2.13, it is common to simplify formulas involving com-
position of several functions, by leaving out the parentheses. For example, one simply
writes f ◦ g ◦ h, when taking the composite of three functions.

Given a function f : A → B, we say that the function f is injective, precisely if any two
distinct elements from A are mapped to distinct elements of B. Writing this in terms of
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Figure 2.2: injective function f : A→ B

logical expressions, this means that:

f : A→ B is injective if and only if for all a1, a2 ∈ A, (a1 ̸= a2 ⇒ f (a1) ̸= f (a2)).

Using (1-21), it is logically equivalent to write:

f : A→ B is injective if and only if for all a1, a2 ∈ A, ( f (a1) = f (a2)⇒ a1 = a2).

This reformulation can be convenient in practice.

A function f : A → B is called surjective precisely if any element from B is in the image
of f , that is:

f : A→ B is surjective if and only if for all b ∈ B, there exists an a ∈ A such that b = f (a).

Using as before the notation f (A) for the image of f , this can compactly be restated as:
a function f : A→ B is called surjective precisely if f (A) = B.

Example 2.14

An example of a function that is injective, but not surjective, is f : R\{0} → R given by
f (x) = 1/x. This function is not surjective, since its image actually is R\{0}, while its co-
domain is R. It is injective, since if f (a) = f (b), that is if 1/a = 1/b, then a = b.

An example of a function that is surjective, but not injective is g : R → [−1, 1] given by
g(x) = sin(x). This function is not injective, since for example 0 and π are both mapped to 0
by the sine function.
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Figure 2.3: surjective function f : A→ B

A function f : A → B is called bijective if it is both injective and surjective. A bijective
function is also called a bijection. Combining the definitions of injective and surjective,
we see that function f : A → B is bijective precisely if for each b ∈ B there exists a
unique a ∈ A such that f (a) = b. In the next section, we will see several examples of
functions, but let us give an example here as well.

Example 2.15

Consider the function h : {0, 1, 2} → {3, 4, 5} given by h(x) = 5− x. Note that h(0) = 5,
h(1) = 4 and h(2) = 3. Hence for any b ∈ {3, 4, 5}, there exists a unique a ∈ {0, 1, 2} such
that h(a) = b. We can conclude that h is a bijective function.

There is a very practical connection between bijective functions and inverse functions.
Let us for completeness first define what the inverse of a function is.

Definition 2.16

Let f : A → B be a function. A function g : B → A is called the inverse function of f
if f ◦ g = idB (the identity function on B) and g ◦ f = idA (the identity function on
A). The inverse of f will be denoted by f−1.

Now we show that a function has an inverse precisely if it is a bijective function.
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Lemma 2.17

Suppose that A and B are sets and let f : A → B be a function. Then f is bijective if
and only if f has an inverse function.

Proof. Suppose that f : A → B is a bijection. As we have seen, a function f : A → B is
bijective precisely if for any b ∈ B there exists a unique a ∈ A such that f (a) = b. The
uniqueness of a implies that we can define a function g : B→ A as b 7→ a. We will show
that g is the inverse function of f . Indeed if b = f (a), we have

( f ◦ g)(b) = f (g(b)) = f (a) = b and (g ◦ f )(a) = g( f (a)) = g(b) = a.

But this shows that f ◦ g = idB and g ◦ f = idA, which by Definition 2.16 means that
g = f−1.

Conversely, if f has an inverse function, then the equation f (a) = b implies that f−1( f (a)) =
f−1(b). Since a = ( f−1 ◦ f )(a) = f−1( f (a)), we see that a = f−1(b). Hence for any
b ∈ B, there exists a unique element a ∈ A such that f (a) = b (namely a = f−1(b)). This
shows that f is bijective.

Example 2.18

Let us again consider the function h : {0, 1, 2} → {3, 4, 5} given by h(x) = 5− x from Exam-
ple 2.15. We have seen that the function h is bijective. Hence by Lemma 2.17, it has an inverse
h−1 : {3, 4, 5} → {0, 1, 2}. Recall that h(0) = 5, h(1) = 4 and h(2) = 3. The inverse of h
simply sends the images back to the original values: h−1(5) = 0, h−1(4) = 1, and h−1(3) = 2.

Note that actually the previous calculations show that h−1(x) = 5− x for all x ∈ {3, 4, 5}.
Hence h−1 : {3, 4, 5} → {0, 1, 2} is given by h−1(x) = 5− x. A small warning: the inverse of
a function does not have to look similar to the function itself. Later we will see examples of
inverse functions where this indeed is not the case.

2.2.1 Computational aspects of functions

The way we have looked at a function f : A→ B, we completely ignored more practical
aspects like: given some a ∈ A, how do you actually compute f (b)? For the general
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mathematical theory of functions, this is not an issue and the “inner workings” of the
function f are then treated as a black box. However, for applications of the theory, it can
be very important to know how to compute function values.

Fortunately, many useful functions can be computed using an algorithm. We will not go
into the precise details on how to define what an algorithm really is, but take an intu-
itive view. Basically, an algorithm is a set of instructions that one could easily transform
into a computer program if one would want to. These simple instructions involve “sim-
ple” operations like multiplication and addition. Moreover, intermediate results can be
stored in memory and used later on in the algorithm if needed. More philosophically,
an algorithm for a function f opens the black box and shows its “inner workings”. Let
us consider the example of the function f : R→ R defined by f (x) = x3. A first attempt
to describe an algorithm that given x, computes f (x) could be:

Step 1. Compute x · x and remember the outcome of this computation.

Step 2. Take the outcome of Step 1 and multiply it by x.

Step 3. Return the value from Step 2.

A bit more formally, we can rewrite this as:

Step 0. Denote by x the given input.

Step 1. Compute x · x and store the outcome under the name y.

Step 2. Compute x · y and store the outcome under the name z.

Step 3. Return z.

To make the description look even more like a computer algorithm, we will write it in
what is known as pseudo-code. The main difference with the previous description is that
a phrase like “Compute x · x and store the outcome under the name y” is compactly
written as “y ← x · x”. The algorithmic pseudo-code description of the function f :
R→ R defined by f (x) = x3 then becomes:

Algorithm 2 for f : R→ R defined by f (x) = x3

Input: x ∈ R

1: y← x · x
2: z← x · y
3: return z
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Let us consider another example:

Example 2.19

Let f : R → R≥0 be defined by x 7→ |x|. Here |x| denotes the absolute value of x. Just as we
observed in Example 1.17, we have that if x < 0, then |x| = −x, while if x ≥ 0, then |x| = x.
For this reason the absolute value is often defined in the following way:

|x| =
{
−x if x < 0,

x otherwise.

When defining a function by cases like this, it is important to check: 1) that all elements of
the domain of the function appear in one of the cases and 2) that an element of the domain
of the function appears in no more than one of the cases. Here the domain of the function is
R. First of all R is the union of R<0 and R≥0, so 1) is satisfied. Moreover, R<0 and R≥0 are
disjoint sets, so that 2) is satisfied. In other words: 1) and 2) are satisfied, because the domain
of the function, R, is the disjoint union of R<0 and R≥0. The given description of the absolute
value function can easily be reformulated as an algorithm in pseudo-code:

Algorithm 3 to compute |x| for x ∈ R

Input: x ∈ R

1: if x < 0 then
2: return −x
3: else
4: return x

2.3 Examples of functions

To exemplify the theory of functions as developed above, let us now consider some
elementary functions f : A → B, where A and B are subsets of R. To help us to show
injectivity of such functions, we use the following lemma:
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Lemma 2.20

Let f : A→ B be a function and assume that A and B are subsets of R. Suppose that
either

for all a1, a2 ∈ A it holds that: a1 < a2 ⇒ f (a1) < f (a2) (2-12)

or
for all a1, a2 ∈ A it holds that: a1 < a2 ⇒ f (a1) > f (a2). (2-13)

Then f is an injective function.

Proof. Assume that the function f satisfies Equation (2-12). Let a1 and a2 be distinct
elements of A. Since a1 ̸= a2, we know that either a1 < a2 or a2 < a1. If a1 < a2, Equation
(2-12) implies that f (a1) < f (a2). If a2 < a1, Equation (2-12) implies f (a2) < f (a1). In
either case, we may conclude that f (a1) ̸= f (a2). Hence f is injective. If the function f
satisfies Equation (2-13), a similar reasoning shows that f is injective as well.

A function f satisfying Equation (2-12) or Equation (2-13) is called strictly monotone.
More precisely, a function f satisfying Equation (2-12) is called strictly increasing, while
if a function f satisfies Equation (2-13), it is called strictly decreasing. Hence Lemma 2.20
can be summarized as: a strictly monotone function is injective.

Example 2.21

Consider the function f : R → R, where f (x) = x2. We have already seen in Example 2.10
that the image of this function equals R≥0. In other words, f (R) = R≥0. The function f is
therefore not surjective. In fact, it is not injective either, since for example f (−1) = 1 and
f (1) = 1.

Since the function f is not bijective, it does not have an inverse. Nonetheless, we can modify
the domain and the co-domain of f so that the resulting function is bijective. First of all,
we can create a function g : R → R≥0 defined by g(x) = x2. The difference between the
functions f and g is subtle: only their co-domains are different. Therefore, even though for
any real number x, it is true that f (x) = g(x), we still consider the functions f and g to be
two different functions. The reason for introducing the function g is that g is surjective, since
g(R) = R≥0 and R≥0 is the co-domain of g. However, g still does not have an inverse, since
g is not injective. Indeed, the reason is the same as why f was not injective. We still have for
example that g(1) = 1 and g(−1) = 1. What we do next is to introduce yet another function
h : R≥0 → R≥0 defined by h(x) = x2. The function h has the same co-domain as the function
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g, but note that the domain of the function h is a subset of that of g. Indeed, the domain of
h is R≥0, which is a strict subset of R, the domain of g. Now one can show that the function
h is strictly monotone and therefore by Lemma 2.20 injective. We already have seen that h is
surjective, so we may conclude that it is bijective. By Lemma 2.17, the function h therefore
has an inverse. Since for any x ∈ R≥0, it holds that

√
x2 = x and (

√
x)2 = x, we see that the

inverse of h is the function h−1 : R≥0 → R≥0 defined by h−1(x) =
√

x.

To illustrate the situation, we have plotted (parts of) the graphs of the functions h and its
inverse h−1. Note that the graph of h−1 is the mirror image of the graph of h in the line y = x.
From the graph of h we can also see the it is a strictly increasing function.
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x

Example 2.22

Let e denote the base of the natural logarithm. The constant e is sometimes called Euler’s
number and is approximately equal to 2.71828. The exponential function exp : R → R>0

is defined by x 7→ ex. It is a strictly increasing function and therefore injective. Further, the
image of the exponential function is R>0, which implies that it is surjective. Combining this
we see that exp is a bijective function. Its inverse is commonly denoted by ln : R>0 → R. In
particular, we have ln(ex) = x for all x ∈ R and eln(x) = x for all x ∈ R>0.

We plot the graphs of the functions exp and ln to illustrate the situation.
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2.3.1 The trigonometric functions sin, cos and tan.

The trigonometric functions sine, cosine and tangent are extremely useful examples of
functions and will appear again in various contexts later on. Therefore we briefly revisit
them in this subsection.

First of all, the sine function is usually denoted by sin, but let us in light of our definition
of functions specify which domain and co-domain it has. First of all, we define the sine
function sin : R → [−1, 1] to be the function such that x 7→ sin(x). The image of sin
is [−1, 1], meaning that sin is a surjective function. It is not an injective function, since
distinct real numbers can have the same value under the sine function. For example,
one has sin(0) = sin(π) = 0. The graph of the sine function is as follows:
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Similarly, we define cos : R → [−1, 1]. Again, the co-domain is chosen to be the closed
interval [−1, 1], which means that the function cos will be surjective. It is not injective
though, since for example cos(−π/2) = cos(π/2) = 0. The graph of the cosine function
is:
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A third commonly used trigonometric function is the tangent function. Loosely speak-
ing, we have tan(x) = sin(x)/ cos(x), but this formula only makes sense for x ∈ R such
that cos(x) ̸= 0. Therefore, we can define tan : {x ∈ R | cos(x) ̸= 0} → R, where
tan(x) = sin(x)/ cos(x). Since {x ∈ R | cos(x) ̸= 0} = R \ {x ∈ R | cos(x) = 0} and
{x ∈ R | cos(x) = 0} = {. . . ,−3π/2,−π/2, π/2, 3π/2, . . . }, we can also say that the
domain of the tangent function is the set R \ {. . . ,−3π/2,−π/2, π/2, 3π/2, . . . }. The
graph of the tangent function is as follows:
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The small circles on the x-axis indicate the values of x for which the tangent function is
not defined. The tangent function is surjective, since its image is R. Just as the sine and
cosine functions, it is not injective. We have for example tan(0) = 0, but also tan(π) = 0.

2.3.2 The inverse trigonometric functions

Since none of the trigonometric functions sin, cos and tan discussed in the previous
subsection are bijections, we cannot find inverses for these functions. However, just
as in Example 2.21, we can modify the domain of these functions and obtain functions
that do have an inverse. These inverses are known as the inverse trigonometric functions
(sometimes also as the arcus functions). In this subsection, we give the details of how
these are defined.
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First of all, if the domain of the function sin : R → [−1, 1] is restricted to the closed
interval [−π/2, π/2], one obtains a function f : [−π/2, π/2] → [−1, 1] defined by
f (x) = sin(x). The function f is a bijective function, since the graph of the sine function
is strictly increasing on the interval [−π/2, π/2] with values from −1 to 1. The inverse
of this function is called the arcsine and usually in mathematical formulas denoted by
arcsin. Hence arcsin : [−1, 1] → [−π/2, π/2] is the inverse of the sine function whose
domain has been restricted to [−π/2, π/2]. The graphs of these two functions look as
follows:
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In a very similar way, we can define the arccosine function. First we restrict the domain
of the usual cosine function to the closed interval [0, π]. The resulting function g :
[0, π] → [−1, 1], where g(x) = cos(x), is strictly decreasing as well as surjective and
thus bijective. The inverse of g is the arccosine function. It is usually denoted by arccos.
Hence arccos : [−1, 1] → [0, π] is the inverse of the cosine function when its domain
is restricted to [0, π]. We illustrate the situation by showing the graphs of these two
functions:
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Finally, we discuss the tangent function. In this case, we simply consider the function
h :] − π/2, π/2[→ R, where h(x) = tan(x). In other words, the function h is simply
the tangent function with its domain restricted to the open interval ]− π/2, π/2[. The
function h is a strictly increasing function with image R, which implies that h is a bijec-
tion. The inverse of h is called the arctangent function, commonly denoted in formulas
as arctan. More precisely, arctan : R →]− π/2, π/2[ is the inverse of the tangent func-
tion with domain restricted to ] − π/2, π/2[. As before, we illustrate the situation by
showing the graphs of these functions:
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Example 2.23

Let us determine some values of the inverse trigonometric functions. Since sin(0) = 0, we
have arcsin(0) = 0. However, even though sin(π) = 0, we do not have arcsin(0) = π. Indeed
a function cannot take two distinct values for the same input! The issue is that arcsin is the
inverse of the sine function with domain restricted to [−π/2, π/2]. Therefore sin(x) = y only
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implies arcsin(y) = x as long as x ∈ [−π/2, π/2]. For example, since sin(π/4) =
√

2/2, we
have arcsin(

√
2/2) = π/4.

For the arccos, we have a similar phenomenon. One has cos(−π/4) =
√

2/2, but this does
not imply arccos(

√
2/2) = −π/4. This time the issue is that the domain of the cosine func-

tion was restricted to [0, π], when defining the arccos function. On the interval [0, π] the
cosine does take the value

√
2/2, namely for x = π/4. Therefore arccos(

√
2/2) = π/4.

As a final example, we have cos(π/3) = 1/2 and sin(π/3) =
√

3/2. Therefore tan(π/3) =
sin(π/3)/ cos(π/3) =

√
3. The arctan function is the inverse of the tangent function with its

domain restricted to ] − π/2, π/2[. Since π/3 ∈] − π/2, π/2[, we may therefore conclude
that arctan(

√
3) = π/3.
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Note 3

Complex numbers

3.1 Introduction to the complex numbers

In this chapter we will introduce the set of complex numbers, commonly denoted by C.
These complex numbers turn out to be extremely useful and no modern scientist or
engineer can do without them anymore. Let us first take a short look at some other
sets of numbers in mathematics. The natural numbers N = {1, 2, 3, . . . } have, as their
name already suggests, a very natural interpretation. They come up when one wants to
count things. The integers Z = {. . . ,−2,−1, 0, 1, 2, . . . } came around when differences
of natural numbers were needed. We have also seen the set of rational numbers Q in
Example 2.4, which consists of fractions of integers.

One may think that the set of rational numbers Q contains all numbers one would ever
need, but this is not the case. For example, it turns out that the equation z2 = 2 does
not have a solution in Q. Instead of saying that such an equation simply does not have
any solutions, mathematicians extended the set of rational numbers Q to the set of real
numbers R. Within R, the equation z2 = 2 has two solutions, namely

√
2 and −

√
2.

The set R is very large and contains many interesting numbers, such as e, the base of
the natural logarithm, and π. Often, the real numbers R are represented as a straight
line, which we will call the real line. Every point on the real line corresponds to a real
number (see Figure 3.1).

Again for some time it was thought that the set of real numbers R would contain all
numbers one would ever want to use. But what about an equation like z2 = −1? It
is clear that within the set of real numbers, this equation does not have any solutions.
We are again in the same situation as before with the equation z2 = 2 before the real
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Figure 3.1: The real line.

−4 −3 −2 −1 0 1 2 3 4

√
2 π

numbers were introduced. We simply try to find a set of numbers even larger than R

that does contain a solution to the equation z2 = −1. It would be natural to denote a
solution to z2 = −1 by

√
−1, but it is more common to write i instead. Hence we want

that i2 = −1. Now we simply define the complex numbers as follows.

Definition 3.1

The set C of complex numbers is defined as:

C = {a + bi | a, b ∈ R}.

The complex number i satisfies the rule

i2 = −1.

The expression a + bi should simply be thought of as a polynomial in the variable i.
Hence it holds for example that a + bi = a + ib. Also, it makes no difference to write
a + b · i instead of a + bi. Hence we have for all a, b ∈ R:

a + bi = a + b · i = a + i · b = a + ib.

Finally, just like for polynomials, a + bi denotes exactly the same complex number as
bi + a.

For any a, b, c, d ∈ R, the two complex numbers a + bi and c + di are the same if and
only if a = c and b = d. If a = 0 it is customary to simplify 0 + bi to bi. In other words
0 + bi = bi. Similarly, if b = 0, one typically writes a instead of a + 0i. Finally, if b = 1,
the 1 in front of the i is often omitted. For example, 5 + 1i = 5 + i. Using all the above,
one has for example i = 1i = 0 + 1i = 0 + 1 · i. The set of complex numbers C contains
the set of real numbers R, because for a ∈ R, we have a = a + 0i. In other words:
R ⊆ C. In fact R ⊊ C, since i ∈ C, while i ̸∈ R.

The complex numbers can represented graphically, but now as a plane called the complex



Note 3 3.1 INTRODUCTION TO THE COMPLEX NUMBERS 52

plane. A complex number a + bi is represented as the point (a, b) in that plane. This
means that the number i has coordinates (0, 1) and therefore will lie on the second axis.
The number i and some other complex numbers have been drawn in the complex plane
in Figure 3.2.

The axes in the complex plane have a special name. The horizontal axis is called the real
axis, because all real numbers lie on it. Indeed, a number on the real axis in the complex
plane will be of the form a + 0i for some a ∈ R.

The vertical axis is called the imaginary axis. In fact, the symbol i is an abbreviation of
the word imaginary. The numbers that lie on the vertical axis are called purely imaginary
numbers. The expressions “complex numbers” and “imaginary numbers” are historical
and show that at some point in time scientists struggled to understand these numbers.
Nowadays, the complex numbers are completely standard.

Figure 3.2: The complex plane.

−4 −3 −2 −1 1 2 3 4

−4i

−3i

−2i

−i

i

2i

3i

4i
4 + 3i

−3− 2i

√
2 π0

The coordinates for a complex number z ∈ C in the complex plane have a special name.
The first coordinate is called the real part of z (denoted by Re(z)), while the second
coordinate of z is called the imaginary part (denoted by Im(z)). If one knows Re(z) and
Im(z), one can compute the number z, because it holds that

z = Re(z) + Im(z)i.
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If a complex number z is written in the form Re(z) + Im(z)i, then one says that the num-
ber z is written in rectangular form. For a given complex number z, the pair (Re(z), Im(z))
is called the rectangular coordinates of z.

Example 3.2

Compute the rectangular coordinates of the following complex numbers:

1. 2 + 3i

2.
√

2

3. i

Answer:

1. The number 2 + 3i is in rectangular form. Therefore, we can read off the real and
imaginary part directly. We have Re(2 + 3i) = 2 and Im(2 + 3i) = 3. Hence the
rectangular coordinates of the complex number 2 + 3i are (2, 3).

2. The number
√

2 is a real number, but we can also view it as a complex number, since√
2 =
√

2 + 0i. From this we see that Re(
√

2) =
√

2 and Im(
√

2) = 0. All real numbers
have in fact imaginary part equal to 0. The rectangular coordinates of

√
2 are (

√
2, 0).

3. The number i is a purely imaginary number and one could also write i = 0 + 1 · i.
Therefore we have Re(i) = 0 and Im(i) = 1. All purely imaginary numbers have real
part 0. The rectangular coordinates of i are (0, 1).

3.2 Arithmetic with complex numbers

Now that we have introduced the complex numbers, we can start to investigate how
much structure they have. We are used to being able to add two numbers, subtract
them, multiply them and divide them. It is not clear at this point if this can be done
with complex numbers, but we will see that this is possible.

We start by defining an addition and a subtraction.



Note 3 3.2 ARITHMETIC WITH COMPLEX NUMBERS 54

Definition 3.3

Let a, b, c, d ∈ R and let a + bi and c + di be two complex numbers in C written in
rectangular form. Then we define:

(a + bi) + (c + di) = (a + c) + (b + d)i

and
(a + bi)− (c + di) = (a− c) + (b− d)i.

The addition or subtraction of two complex numbers is very similar to the addition or
subtraction of two polynomials of degree one (polynomials will be defined more pre-
cisely in Definition 4.1). One simply collect the terms not involving i and the terms
involving i. One can therefore remember the addition by for example adding the fol-
lowing intermediate steps:

(a + bi) + (c + di) = a + bi + c + di
= a + c + bi + di
= (a + c) + (b + d)i

The subtraction can be explained similarly. Graphically, the addition of complex num-
bers is like the addition of two vectors in the plane, see Figure 3.3. Note that (a + bi) +
(c + di) = (c + di) + (a + bi). Hence, when adding several complex numbers, the order
in which one adds these numbers does not matter.

Example 3.4

Simplify the following expressions and write the outcome in rectangular form.

1. (3 + 2i) + (1 + 4i)

2. (3 + 2i)− (1 + 4i)

3. (5− 7i)− i

4. (5− 7i)− (−10 + i)

Answer:

1. (3 + 2i) + (1 + 4i) = (3 + 1) + (2 + 4)i = 4 + 6i
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Figure 3.3: Addition of complex numbers. Here it is shown graphically that
(3 + 2i) + (1 + 4i) = 4 + 6i.
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1 + 4i

3 + 2i

4 + 6i

0

2. (3 + 2i)− (1 + 4i) = (3− 1) + (2− 4)i = 2− 2i

3. (5− 7i)− i = 5 + (−7− 1)i = 5− 8i

4. (5− 7i)− (−10 + i) = (5− (−10)) + (−7− 1)i = 15− 8i

Now that we have the addition and subtraction of complex numbers in place, let us take
a look at their multiplication. Suppose for example that we would want to multiply the
complex numbers a + bi and c + di, where as usual a, b, c, d ∈ R. First of all, let us see
what happens if we simply multiply these expressions viewed as polynomials in the
variable i:

(a + bi) · (c + di) = a · (c + di) + bi · (c + di) = a · c + a · d i + b · c i + b · d i2.

Till now, the only thing we have done is to simplify the product to get rid of the paren-
theses. But now we should remember that the whole point of introducing i was that it
is a solution to the equation z2 = −1. Hence i2 = −1. If we use this, we get

(a + bi) · (c + di) = a · c + a · di + b · ci + b · d · (−1) = (a · c− b · d) + (a · d + b · c)i.

We arrived again at a complex number! All we needed to use were the usual rules of
computation (when we got rid of the parentheses) and the formula i2 = −1. Let us



Note 3 3.2 ARITHMETIC WITH COMPLEX NUMBERS 56

therefore take the formula we just found and put it as the formal definition of multipli-
cation of complex numbers.

Definition 3.5

Let a, b, c, d ∈ R and let a + bi and c + di be two complex numbers in C given in
rectangular form. We define:

(a + bi) · (c + di) = (a · c− b · d) + (b · c + a · d)i.

There is no need to memorize the above definition. To calculate a product of two com-
plex numbers in rectangular form, all one needs to do is to remember how we obtained
it: we simplified the product by multiplying out all terms and then used that i2 = −1.
Note that (a + bi) · (c + di) = (c + di) · (a + bi), so the order of the complex numbers
does not matter in a multiplication. One says that multiplication of complex numbers is
commutative. We will see in Section 3.3 that the multiplication of two complex numbers
also can be described geometrically.

Example 3.6

Simplify the following expression and write the result in rectangular form.

1. (1 + 2i) · (3 + 4i)

2. (4 + i) · (4− i)

Answer:

1.

(1 + 2i)(3 + 4i) = 1 · 3 + 1 · 4i + 2i · 3 + 2i · 4i

= 3 + 4i + 6i + 8i2

= 3 + 10i− 8

= −5 + 10i.
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2.

(4 + i) · (4− i) = 4 · 4 + 4 · (−i) + i · 4− i2

= 16− 4i + 4i− (−1)

= 17 + 0i

= 17.

In this case the outcome is actually a real number.

Part two of this example shows that the product of two nonreal numbers can be a real
number. This example is actually a special case of the following lemma:

Lemma 3.7

Let a, b ∈ R and z = a + bi a complex number in rectangular form. Then

(a + bi) · (a− bi) = a2 + b2.

Proof. We have

(a + bi) · (a− bi) = a · a + a · (−bi) + (bi) · a− b · bi2

= a2 − abi + abi− b2 · (−1)
= a2 + b2.

Motivated by this lemma, we introduce the following:

Definition 3.8

Let z ∈ C be a complex number. Suppose that z = a + bi in rectangular form. Then
we define the complex conjugate of z as z = a− bi. The function from C to C defined
by z 7→ z is called the complex conjugation function.
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Note that directly from this definition, we see that Re(z) = Re(z) and Im(z) = −Im(z).
Hence,

z = Re(z)− Im(z)i.

Therefore Lemma 3.7 implies that

z · z = Re(z)2 + Im(z)2. (3-1)

Note that this equation implies that for any z ∈ C, the product z · z is a real number.

Complex conjugation turns out to be useful for defining division of complex numbers.
We would like to be able to divide any complex number by any nonzero complex num-
ber. Note that we already are able to divide a complex number a + bi ∈ C by a nonzero
real number c ∈ R by defining:

a + bi
c

=
a
c
+

b
c

i a, b ∈ R and c ∈ R \ {0}.

The trick to divide any complex number z1 = a + bi by any nonzero complex number
z2 = c + di is to observe the following:

z1

z2
=

a + bi
c + di

=
a + bi
c + di

· c− di
c− di

=
(a + bi) · (c− di)

c2 + d2 . (3-2)

The numerator of the righthand side in this equation is just a product of two complex
numbers, which we know how to handle already. The denominator is a nonzero real
number, namely c2 + d2, and we also already know how to divide a complex number
by a real number. Let us make sure that the denominator c2 + d2 indeed is nonzero real
number. First of all, it is a real number, since c and d are real numbers. Second of all,
since the square of a real number cannot be a negative, we see that c2 ≥ 0, d2 ≥ 0. The
only way c2 + d2 = 0 can hold is therefore if both c2 = 0 and d2 = 0. But then c = 0 and
d = 0, implying that c + di = 0, contrary to our assumption that we were attempting to
divide by a nonzero complex number.

Looking back at the way we defined division by a complex number, we see that the
main ingredient was that if z1 ∈ C and z2 ∈ C\{0}, then the main idea for computing
z1/z2 was to multiply both numerator and denominator with the complex conjugate of
z2, since then the denominator becomes z2 · z2, which is a real number. Equation (3-2)
allows us therefore to divide by nonzero complex numbers. A special case of Equation
(3-2) is the following:

1
c + di

=
1

c + di
· c− di

c− di
=

c− di
c2 + d2 =

c
c2 + d2 −

d
c2 + d2 i. (3-3)

Now, let us consider some examples:
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Example 3.9

Simplify the following expressions and write the result in rectangular form.

1. 1/(1 + i)

2.
1 + 2i
3 + 4i

Answer:

1. Note that 1/(1+ i) is just a different way to write 1
1+i . Hence we obtain using Equation

(3-2), or alternatively Equation (3-3):

1/(1 + i) =
1 · (1− i)

(1 + i) · (1− i)
=

1− i
12 + 12 =

1− i
2

=
1
2
− 1

2
i.

2. Using Equation (3-2), we find

1 + 2i
3 + 4i

=
(1 + 2i)(3− 4i)
(3 + 4i)(3− 4i)

=
3− 4i + 6i− 8i2

32 + 42

=
3 + 2i + 8

9 + 16
=

11 + 2i
25

=
11
25

+
2

25
i.

Let us collect various properties of multiplication and addition together in one theorem.
We will not prove the theorem, though several of the statements have actually already
been shown in the previous.
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Theorem 3.10

Let C be the set of complex numbers and let z1, z2, z3 ∈ C be chosen arbitrarily. Then
the following properties are satisfied:

1. Addition and multiplication are associative: z1 + (z2 + z3) = (z1 + z2) + z3, and
z1 · (z2 · z3) = (z1 · z2) · z3.

2. Addition and multiplication are commutative: z1 + z2 = z2 + z1, and z1 · z2 =
z2 · z1.

3. Distributivity of multiplication over addition holds: z1 · (z2 + z3) = z1 · z2 + z1 ·
z3.

Further one has for complex numbers, similarly as for the real numbers, the following
properties:

Theorem 3.11

1. Addition and multiplication have a neutral element: the elements 0 and 1 in C

satisfy z + 0 = z and z · 1 = z for all z ∈ C.

2. Additive inverses exist: for every z ∈ C, there exists an element in C, denoted
−z, called the additive inverse of z, such that z + (−z) = 0.

3. Multiplicative inverses exist: for every z ∈ C \ {0}, there exists an element
in C, denoted by z−1 or 1/z, called the multiplicative inverse of z, such that
z · z−1 = 1.

Note that point two and three of Theorem 3.11 guarantee the existence of additive
and multiplicative inverses. It does not state how to compute these inverses though.
However, we have already seen how to compute these. To illustrate the computa-
tional method algorithmically, let us write down exactly how to compute−z and 1/z in
pseudo-code in the following example:
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Example 3.12

A possible algorithm that finds−z for a given complex number z can be described as follows:
first write z in rectangular form, which essentially means that it finds a, b ∈ R such that
z = a + bi. Then −z = −a− bi. In pseudo-code:

Algorithm 4 for computing the “additive inverse of z ∈ C”.
Input: z ∈ C

1: a← Re(z)
2: b← Im(z)
3: return −a− bi

To find 1/z, we use Equation (3-3). Note that 1/z does not exist if z = 0. Therefore the
algorithm first checks if z = 0.

Algorithm 5 for computing the “multiplicative inverse of z ∈ C”.
Input: z ∈ C

1: if z = 0 then
2: return “0 has no multiplicative inverse!”
3: else
4: c← Re(z),
5: d← Im(z),
6: N ← c2 + d2,
7: return c

N −
d
N i.

3.3 Modulus and argument

We have seen in Section 3.1 that a complex number z can be uniquely determined by
its real part Re(z) and its imaginary part Im(z), since for any z ∈ C it holds that z =
Re(z)+ Im(z)i. We called the pair (Re(z), Im(z)) the rectangular coordinates of z. In this
section we will introduce another way to describe a complex number. Given a complex
number z, we can draw a triangle in the complex plane with vertices in the complex
numbers 0, Re(z) and z (see Figure 3.4). The distance from z to 0 is called the modulus
or absolute value of z and is denoted by |z|. The angle from the positive part of the real
axis to the vector from 0 to z is called the argument of z and is denoted by arg(z).
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We will always give the argument (and indeed any angle) in radians. Since the angle
2π denotes a full turn, one can always add an integer multiple of 2π to an angle. For
example the angle −π/4 can also be given as 7π/4, since −π/4 + 2π = 7π/4. For
this reason one says that the argument of a complex number is determined only up to a
multiple of 2π. A formula like “arg(z) = 5π/4" should therefore be read as: “5π/4 is
an argument of z". It is always possible to find an argument of a complex number z in
the interval ]− π, π]. This value is sometimes called the principal value of the argument
and denoted by Arg(z).

|z|
Im(z)

0

z

Re(z)

arg(z)

Figure 3.4: Modulus and argument of a complex number z.

From Figure 3.4 we can deduce that

Re(z) = |z| cos(arg(z)) and Im(z) = |z| sin(arg(z)). (3-4)

Therefore, given |z| and arg(z), we can compute z’s rectangular coordinates. This im-
plies that the pair (|z|, arg(z)) completely determines the complex number z, since

z = |z| ( cos(arg(z)) + sin(arg(z))i ) . (3-5)

The pair (|z|, Arg(z)) is called the polar coordinates of a complex number z ∈ C. If a
complex number z is written in the form z = r ( cos(α) + i sin(α) ), with r a positive real
number, it holds that |z| = r and arg(z) = α. Moreover, if α ∈]−π, π], then Arg(z) = α.
Again from Figure 3.4 we can deduce that

|z| =
√

Re(z)2 + Im(z)2 and tan(arg(z)) = Im(z)/Re(z), if Re(z) ̸= 0. (3-6)

This equation is the key to compute the polar coordinates of a number from its rectan-
gular coordinates. More precisely, using the inverse tangent function arctan discussed
in Subsection 2.3.2, we have the following:
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Theorem 3.13

If a complex number z different from zero has polar coordinates (r, α), then

Re(z) = r cos(α) and Im(z) = r sin(α).

Conversely, if a complex number z different from zero has rectangular coordinates
(a, b), then:

|z| =
√

a2 + b2 and Arg(z) =



arctan(b/a) if a > 0,

π/2 if a = 0 and b > 0,

arctan(b/a) + π if a < 0 and b ≥ 0,

−π/2 if a = 0 and b < 0,

arctan(b/a)− π if a < 0 and b < 0.

Proof. Given the polar coordinates of z, we can use Equation (3-4) to compute its rect-
angular coordinates. Conversely, given the rectangular coordinates (a, b) of z, we get
from Equation (3-6) that |z| =

√
a2 + b2. If a = 0, the number z lies on the imaginary

axis. In this case we have that Arg(z) = π/2 if b > 0 and Arg(z) = −π/2 if b < 0. If
a ̸= 0, it holds according to Equation (3-6) that tan(Arg(z)) = b/a. Therefore it then
holds that Arg(z) = arctan(b/a) + nπ for some integer n ∈ Z. If z lies in the first or
fourth quadrant, then Arg(z) lies in the interval ]− π/2, π/2[. In this case we therefore
get that Arg(z) = arctan(b/a). If z lies in the second quadrant, its argument lies in the
interval ]π/2, π]. Therefore we then find that Arg(z) = arctan(b/a) + π. Similarly, if z
lies in the third quadrant, we find that Arg(z) = arctan(b/a)− π.

The modulus can be seen as a function f : C → R, where f (z) = |z|. It plays a similar
role for the complex numbers as the absolute value function from Example 2.19. In fact,
if z = a + 0i is a real number, it holds that |z| =

√
a2 + 02 if we apply the modulus

function. However,
√

a2 = |a|, where now |a| denotes the absolute value of a real
number. Hence the modulus, when applied to a real number a, gives exactly the same
output as the absolute value applied to a. This explains why it makes sense to use
exactly the notation |a| both for the usual absolute value of a real number and for the
modulus of a complex number. Indeed, |z| is in fact often also called the absolute value
of a complex number. Finally, observe that |z|2 = Re(z)2 + Im(z)2 = z · z, the final
equality following from equation (3-1).
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The formula for the argument of a complex number a + bi depends on in which quad-
rant of the complex plane the number lies (see Figure 3.5).

π
2

−π
2

1st quadrant:

arg(z) = arctan(b/a)

2nd quadrant:

arg(z) = arctan(b/a) + π

3rd quadrant:

arg(z) = arctan(b/a)− π

4th quadrant:

arg(z) = arctan(b/a)

Figure 3.5: Formulas for the argument of z = a + bi.

Example 3.14

Compute the polar coordinates of the following complex numbers:

1. 4i

2. −7

3. 3 + 3i

4. −2− 5i

Answer: We can find the modulus and argument using Theorem 3.13. Figure 3.5 is useful
when computing the argument. Therefore, we first plot the four given complex numbers in
the complex plane.
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−7 −6 −5 −4 −3 −2 −1 1 2 3 4

−5i

−4i

−3i

−2i

−i

i

2i

3i

4i

3 + 3i

−2− 5i

0

1. |4i| = |0 + 4i| =
√

02 + 42 = 4 and Arg(4i) = π/2. Therefore the polar coordinates
of 4i are (4, π/2).

2. | − 7| =
√
(−7)2 + 02 = 7 and Arg(−7) = arctan(0/(−7)) + π = π. Therefore the

polar coordinates of −7 are (7, π).

3. |3 + 3i| =
√

32 + 32 = 3
√

2 and Arg(3 + 3i) = arctan(3/3) = π/4. Therefore the
polar coordinates of 3 + 3i are (3

√
2, π/4).

4. | − 2− 5i| =
√
(−2)2 + (−5)2 =

√
29

and

Arg(−2− 5i) = arctan((−5)/(−2))− π = arctan(5/2)− π. Therefore the polar coor-
dinates of −2− 5i are (

√
29, arctan(5/2)− π).

Example 3.15

The following polar coordinates are given. Compute the corresponding complex numbers
and write those numbers in rectangular form.

1. (2, π/3)
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2. (10, π)

3. (4,−π/4)

4. (2
√

3,−2π/3)

5. (3, 2)

Answer: We use Equation (3-5) to compute the complex numbers z corresponding to the
given polar coordinates. Afterwards we express these complex numbers in rectangular form.

1. z = 2 · (cos(π/3) + sin(π/3)i) = 2 · (1/2 +
√

3/2i) = 1 +
√

3i.

2. z = 10 · (cos(π) + sin(π)i) = −10 + 0i = −10.

3. z = 4 · (cos(−π/4) + sin(−π/4)i) = 4 · (
√

2/2−
√

2/2i) = 2
√

2− 2
√

2i.

4. z = 2
√

3 · (cos(−2π/3) + sin(−2π/3)i) = 2
√

3 · (−1/2−
√

3/2i) = −
√

3− 3i.

5. z = 3 · (cos(2) + sin(2)i) = 3 cos(2) + 3 sin(2)i.

3.4 The complex exponential function

We have seen that many computations one can do with real numbers, like addition,
subtraction, multiplication and division, also can be done with complex numbers. We
will see in this section that also the exponential function exp : R→ R>0, where exp(t) =
et can be defined for complex numbers as well. The resulting function is called the
complex exponential function.

Definition 3.16

Let z ∈ C be a complex number whose rectangular form is given by z = a + bi for
certain a, b ∈ R. Then we define

ez = ea · (cos(b) + sin(b)i).

The complex exponential function is usually again denoted by exp. This time the do-
main of the function is C though. More precisely, the complex exponential function
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is the function exp : C → C. Note that if z is a real number, say z = a + 0i, then
ez = ea · (cos(0) + sin(0)i) = ea. So the complex exponential function, when evaluated
in a real number, gives exactly the same as the usual exponential function would have
given. This is the reason why it makes sense to denote both the exponential function
exp : R → R>0 and the complex exponential function exp : C → C with the same
symbol exp.

Example 3.17

Write the following expressions in rectangular form:

1. e2

2. e1+i

3. eπi

4. eln(2)+iπ/4 (whenever we write ln, we mean the logarithm with base e)

5. e2πi

Answer: We use Definition 3.16 and simplify till we find the desired rectangular form.

1. Since e2 is a real number, it is already in rectangular form. If we use Definition 3.16
anyway, we find e2 = e2+0i = e2 · (cos(0) + sin(0)i) = e2 · (1 + 0i) = e2, which again
shows that e2 already was in rectangular form. It is also fine to write e2 = e2 + 0i and
then to return e2 + 0i as answer.

2. e1+i = e1 · (cos(1) + sin(1)i) = e cos(1) + e sin(1)i.

3. eπi = e0+πi = e0 · (cos(π) + sin(π)i) = 1 · (−1 + 0i) = −1.

4. eln(2)+iπ/4 = eln(2) · (cos(π/4) + sin(π/4)i) = 2(
√

2/2 +
√

2/2i) =
√

2 +
√

2i.

5. e2πi = cos(2π) + sin(2π)i = 1 + 0i = 1. Note that also e0 = 1. This shows that the
complex exponential function is not injective.

Directly from Definition 3.16, we see that for any z ∈ C:

Re(ez) = eRe(z) cos(Im(z)) and Im(ez) = eRe(z) sin(Im(z)).

The complex exponential function has many properties in common with the usual real
exponential function. To show those, we will use the following lemma.
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Lemma 3.18

Let α1, α2 ∈ R. We have

(cos(α1) + sin(α1)i) · (cos(α2) + sin(α2)i) = cos(α1 + α2) + sin(α1 + α2)i.

Proof. By multiplying out the parentheses, we can compute the real and imaginary part
of the product (cos(α1) + sin(α1)i) · (cos(α2) + sin(α2)i). It turns out that the real part
is given by cos(α1) cos(α2)− sin(α1) sin(α2) and the imaginary part by cos(α1) sin(α2)+
sin(α1) cos(α2). Using the additions formulas for the cosine and sine functions the lemma
follows.

Theorem 3.19

Let z, z1 and z2 be complex numbers and n an integer. Then it holds that

ez ̸= 0

1/ez = e−z

ez1ez2 = ez1+z2

ez1/ez2 = ez1−z2

(ez)n = enz

Proof. We will show the third item: ez1ez2 = ez1+z2 . First we write z1 and z2 in rectangu-
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lar form: z1 = a1 + b1i and z2 = a2 + b2i. Then we find that

ez1 · ez2 = ea1 · (cos(b1) + sin(b1)i) · ea2 · (cos(b2) + sin(b2)i)

= ea1 · ea2 · (cos(b1) + sin(b1)i) · (cos(b2) + sin(b2)i)

= ea1+a2 · (cos(b1) + sin(b1)i) · (cos(b2) + sin(b2)i)

= ea1+a2 · (cos(b1 + b2) + sin(b1 + b2)i) (using Lemma 3.18)

= ea1+a2+(b1+b2)i = ez1+z2 .

3.5 Euler’s formula

The complex exponential function gives a connection between trigonometry and com-
plex numbers. We will explore this connection in this section.

Let t be a real number. The formula

eit = cos(t) + i sin(t) (3-7)

is known as Euler’s formula and is a consequence of Definition 3.16. It implies that

e−it = cos(−t) + i sin(−t) = cos(t)− i sin(t). (3-8)

Equations (3-7) and (3-8) can be seen as equations in the unknowns cos(t) and sin(t).
Solving for cos(t) and sin(t) gives:

cos(t) =
eit + e−it

2
and sin(t) =

eit − e−it

2i
. (3-9)

Equation (3-9) can be used to rewrite products of cos- and sin-functions to a sum of
cos- and sin-functions (that is to say, as a sum of purely harmonic functions). This kind
of computations are standard in frequency analysis, where one tries to write arbitrary
functions as a sum of purely harmonic functions. It can also be useful to compute inte-
grals of trigonometric expressions as we can see in the following example.
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Example 3.20

Compute
∫

sin(3t) cos(t)dt.

Answer: First we use Euler’s formulas to rewrite the expression sin(3t) cos(t):

sin(3t) cos(t) =
ei3t − e−i3t

2i
· eit + e−it

2
=

(ei3t − e−i3t)(eit + e−it)

4i

=
ei4t + ei2t − e−i2t − e−i4t

4i
=

1
2

(
ei4t − e−i4t

2i
+

ei2t − e−i2t

2i

)

=
sin(4t)

2
+

sin(2t)
2

.

Now we get∫
sin(3t) cos(t)dt =

∫ sin(4t)
2

+
sin(2t)

2
dt = −cos(4t)

8
− cos(2t)

4
+ c, c ∈ R.

In Figure 3.6 the identity sin(3t) cos(t) = sin(4t)
2 + sin(2t)

2 from the previous example is
illustrated.

sin(3t) cos(t)
sin(4t)/2
sin(2t)/2

−π −π/2 π/2 π

−1

−0.5

0.5

1

Figure 3.6: It holds that sin(3t) cos(t) = sin(4t)
2 + sin(2t)

2 .

Another application of Euler’s formula is given in the following theorem.
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Theorem 3.21

Let n ∈N be a natural number. Then the following formulas hold:

cos(nt) = Re((cos(t) + sin(t)i)n)

and
sin(nt) = Im((cos(t) + sin(t)i)n)

Proof. The key is the following equation:

cos(nt) + sin(nt)i = eint = (eit)n = (cos(t) + sin(t)i)n.

The theorem follows by taking real and imaginary parts on both side of this equality.

The expressions in this theorem are known as DeMoivre’s formula. Let us consider some
examples.

Example 3.22

Express cos(2t) and sin(2t) in cos(t) and sin(t).

Answer: According to DeMoivre’s formula for n = 2, we have cos(2t) = Re((cos(t) +
sin(t)i)2) and sin(2t) = Im((cos(t) + sin(t)i)2). Since

(cos(t) + sin(t)i)2 = cos2(t) + 2 cos(t) sin(t)i + sin2(t)i2

= cos2(t) + 2 cos(t) sin(t)i− sin2(t)

= cos2(t)− sin2(t) + 2 cos(t) sin(t)i,

we find that
cos(2t) = cos(t)2 − sin(t)2

and
sin(2t) = 2 cos(t) sin(t).
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Example 3.23

Express cos(3t) and sin(3t) in cos(t) and sin(t).

Answer: According to DeMoivre’s formula for n = 3, we have cos(3t) = Re((cos(t) +
i sin(t))3) and sin(3t) = Im((cos(t) + i sin(t))3). After some computations we find that
(cos(t) + i sin(t))3 = (cos(t)3 − 3 cos(t) sin(t)2) + i(3 cos(t)2 sin(t) − sin(t)3). Apparently
the following holds:

cos(3t) = cos(t)3 − 3 cos(t) sin(t)2

and
sin(3t) = 3 cos(t)2 sin(t)− sin(t)3.

3.6 The polar form of a complex number

Let r be a positive, real number and α a real number. Then from Definition 3.16, we
see that r · eαi = r · (cos(α) + sin(α)i). As we have seen in and after Equation (3-5), the
number r · eαi then has modulus r and an argument equal to α (see Figure 3.7). Also we
can rewrite Equation (3-5) as z = |z|ei arg(z). This way to write a complex number has a
special name:

Definition 3.24

Let z ∈ C \ {0} be a non-zero complex number. Then the righthand side of the
equation

z = |z| · ei arg(z)

is called the polar form of z.

If z ̸= 0, we can from the polar coordinates (r, α) of z directly write z in polar form,
namely z = reiα. Conversely, given an expression of the form z = reiα, with r > 0
a positive real number and α ∈] − π, π] a real number, we can read off that the polar
coordinates of z are given by (r, α). See Figure 3.7 for an illustration.

Example 3.25

Write the following complex numbers in polar form:
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|z|=r

z=reiα

0
arg(z)=α

Figure 3.7: Polar form of a complex number z.

1. −1 + i

2. 2 + 5i

3. e7+3i

4. e7+3i/(−1 + i)

Answer: In principle, one can for each of the given numbers calculate its modulus and its
argument. Once these have been calculated, one can write the number in polar form.

1. | − 1 + i| =
√

1 + 1 =
√

2 and arg(−1 + i) = arctan(1/ − 1) + π = 3π/4. In polar
form the number is therefore given by

√
2ei3π/4.

2. |2 + 5i| =
√

4 + 25 =
√

29 and arg(2 + 5i) = arctan(5/2). We therefore find that 2 + 5i
has the following polar form:

√
29ei arctan(5/2).

3. e7+3i = e7e3i. The righthand side of this equation is already the polar form of the
number, since it is of the form reiα (with r > 0 and α ∈ R). We can read off that the
modulus of the number e7+3i equals e7, while its argument equals 3.

4. We have seen in the first part of this example that −1+ i =
√

2ei3π/4. Then we get that:

e7+3i

−1 + i
=

e7e3i
√

2ei3π/4
=

e7
√

2
e3i

ei3π/4 =
e7
√

2
e(3−3π/4)i.

The last expression is the desired polar form. We can read off that the number
e7+3i/(−1 + i) has modulus e7/

√
2 and argument 3− 3π/4.

In the previous example, we saw that the modulus of the number e7+3i equalled e7,
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while its argument was given by 3. In general it holds that

|ez| = eRe(z) and arg(ez) = Im(z). (3-10)

In the last item of Example 3.17, we have seen that the complex exponential function
is not injective, since the equation ez = 1 has several solutions, for example 0 and 2π i.
Using what we have learned so far, let us investigate more generally how to solve this
type of equation:

Lemma 3.26

Let w ∈ C be a complex number. If w = 0, then the equation ez = w has no solutions.
If w ̸= 0, then the solutions to equation ez = w are precisely those z ∈ C of the form
z = ln(|w|) + arg(w)i, where arg(w) can be any argument of w.

Proof. Equation (3-10) implies that |ez| cannot be zero, since eRe(z) > 0 for all z ∈ C.
Hence the equation ez = 0 has no solutions. Now assume that w ̸= 0. If ez = w, then
Equation (3-10) implies that |w| = |ez| = eRe(z) and therefore that Re(z) = ln(|w|).
Similarly, using the second part of Equation (3-10), ez = w implies that arg(w) = Im(z).
Note though that there are infinitely many possible values for arg(w), since we can
always modify it by adding an integer multiple of 2π to it. So far, we have showed that
if w ̸= 0, then any solution of the equation ez = w has to be of the form z = ln(|w|) +
arg(w)i. Conversely, given any z satisfying z = ln(|w|) + arg(w)i, where arg(w) is any
argument of w, then ez = eln(|w|)+arg(w)i = eln(|w|) · ei arg(w) = |w| · ei arg(w) = w, where
the last equality follows since |w|ei arg(w) is simply the polar form of w.

A direct consequence of this lemma is that the image of the complex exponential func-
tion exp : C → C with z 7→ ez, satisfies exp(C) = C \ {0}. Indeed, the equation ez = 0
has no solutions, implying that 0 is not in the image, while for any nonzero complex
number w, the lemma explains how to find complex numbers z that are mapped to w
by the complex exponential function.

We can now revisit polar coordinates and use the properties of the complex exponential
function as given in Theorem 3.19 to prove the following theorem.
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Theorem 3.27

Let z1, z2 ∈ C \ {0} be two complex numbers both different from zero. Then the
following holds:

|z1 · z2| = |z1| · |z2|

and
arg(z1 · z2) = arg(z1) + arg(z2).

We also have
|z1/z2| = |z1|/|z2|

and
arg(z1/z2) = arg(z1)− arg(z2).

Finally, let n ∈ Z be an integer and z ∈ C \ {0} a non-zero complex number. Then

|zn| = |z|n

and
arg(zn) = n arg(z).

Proof. We only show the first two parts of the theorem. Let us write r1 = |z1|, r2 = |z2|,
α1 = arg(z1) and α2 = arg(z2). According to Equation (3-5) we have

z1 · z2 = r1 · eα1i · r2 · eα2i

= r1 · r2 · eα1i · eα2i

= r1 · r2 · eα1i+α2i

= r1 · r2 · e(α1+α2)i

We used the third item of Theorem 3.19 in the third equality. We can now conclude that

|z1 · z2| = r1 · r2 = |z1| · |z2| and arg(z1 · z2) = α1 + α2 = arg(z1) + arg(z2).

Theorem 3.27 gives a geometric way to describe the multiplication of two complex num-
bers: the length of a product is the product of the lengths and the argument of a product
is the sum of the arguments (see Figure 3.8).

The polar form of a complex number can be very useful for the computation of an inte-
ger power of a complex number. Let us look at an example.
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z1

z2

0

z1 · z2

1

i

|z1 · z2| = |z1| · |z2|

arg(z1 · z2) = arg(z1) + arg(z2)

Figure 3.8: Graphic illustration of Theorem 3.27.

Example 3.28

Write the following complex numbers in rectangular form. Hint: use polar forms.

1. (1 + i)13.

2. (−1−
√

3i)15.

Answer:
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1. The number 1+ i has argument π/4 and modulus
√

2. Hence 1+ i =
√

2 · eiπ/4. Hence

(1 + i)13 =
(√

2 · eiπ/4
)13

=
√

2
13
· ei13π/4

=
√

2
13
· (cos(13π/4) + sin(13π/4)i)

=
√

2
13
· (cos(−3π/4) + sin(−3π/4)i)

= 64
√

2 · (cos(−3π/4) + sin(−3π/4)i)

= 64
√

2 ·
(
−
√

2/2− i
√

2/2
)

= −64− 64i.

2. First we calculate modulus and argument −1 −
√

3i. According to Theorem 3.13 it
holds that

arg(−1−
√

3i) = arctan((−
√

3)/(−1))− π = −2π/3

and
| − 1−

√
3i| =

√
(−1)2 + (−

√
3)2 = 2.

Hence −1−
√

3i = 2 · e−i2π/3. Therefore

(−1−
√

3i)15 =
(

2 · e−i2π/3
)15

= 215 · e−i30π/3

= 215 · (cos(−30π/3) + sin(−30π/3)i)

= 215 · (cos(−10π) + sin(−10π)i)

= 215 · (cos(0) + sin(0)i)

= 215 · (1 + 0i)

= 215.
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Note 4

Polynomials

4.1 Definition of polynomials

In this chapter we will investigate a certain type of expressions called polynomials.
Polynomials will come up again later, when we discuss differential equations, exam-
ples of vector spaces, and eigenvalues of a matrix, but that is for later. For now, we start
by defining what a polynomial is.

Definition 4.1

A polynomial p(Z) in a variable Z is an expression of the form:

p(Z) = a0Z0 + a1Z1 + a2Z2 + · · ·+ anZn, with n ∈ Z≥0 a non-negative integer.

Here the symbols a0, a1, a2, . . . , an ∈ C denote complex numbers, which are called
the coefficients of p(Z). The expressions a0Z0, a1Z1, . . . , anZn are called the terms of
the polynomial p(Z). The largest i for which ai ̸= 0 is called the degree of p(Z) and is
denoted by deg(p(Z)). The corresponding coefficient is called the leading coefficient.
Finally, the set of all polynomials in Z with complex coefficients is denoted by C[Z].

It is common not to write Z0 and to write Z instead of Z1. Then a polynomial is simply
written as p(Z) = a0 + a1Z + a2Z2 + · · · + anZn. A polynomial of degree zero can
then just be interpreted as a nonzero constant a0, while a polynomial of degree one has
the form a0 + a1Z. The polynomial all of whose coefficients are zero is called the zero
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polynomial and denoted by 0. It is customary to define the degree of the zero polynomial
to be −∞, minus infinity.

By definition, the coefficients completely determine a polynomial. In other words: two
polynomials p1(Z) = a0 + a1Z · · ·+ anZn of degree n and p2(Z) = b0 + b1Z · · ·+ bmZm

of degree m are equal if and only if n = m and ai = bi for all i. The order of the terms is
not important. For example, the polynomials Z2 + 2Z + 3, Z2 + 3+ 2Z and 3+ 2Z + Z2

are all the same. The notation C[Z] for the set of all polynomials with coefficients in C is
standard, but the symbol used to indicate the variable, in our case Z, varies from book
to book. We have chosen Z, since we have been using z for complex numbers. Other
sets of polynomials can be obtained by replacing C by something else. For example, we
will frequently use R[Z], which denotes the set of all polynomials with coefficients in
R. Note that R[Z] ⊆ C[Z], since R ⊆ C.

Example 4.2

Indicate which of the following expressions is an element of C[Z]. If the expression is a
polynomial, give its degree and leading coefficient.

1. 1 + Z2

2. Z−1 + 1 + Z3

3. i

4. sin(Z) + Z12

5. 1 + 2Z + 5Z10 + 0Z11

6. 1 + Z + Z2.5

7. (1 + Z)2

Answer:

1. 1 + Z2 is a polynomial in Z. If we want to write it in the form a0 + a1Z + a2Z2 + · · ·+
anZn as in Definition 4.1, we can write it as 1 + 0Z + 1Z2. Hence n = 2, a0 = a2 = 1
and a1 = 0. Because a2 ̸= 0, the polynomial is of degree 2, while its leading coefficient
is a2, which is equal to 1.

2. Z−1 + 1 + Z3 is not a polynomial in Z because of the term Z−1. The exponents of Z of
the terms in a polynomial may not be negative.
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3. The complex number i can be interpreted as a polynomial in C[Z]. One chooses n = 0
and a0 = i in Definition 4.1. The polynomial i has therefore degree 0 and leading
coefficient i.

4. sin(Z) + Z12 is not a polynomial because of the term sin(Z).

5. 1 + 2Z + 5Z10 + 0Z11 is a polynomial in C[Z]. The term of degree eleven can be left
out though, since the coefficient of Z11 is 0. The highest power of Z with a coefficient
different from zero is therefore 10. This means that deg(1 + 2Z + 5Z10 + 0Z11) = 10,
while its leading coefficient is 5.

6. 1 + Z + Z2.5 is not a polynomial, because of the term Z2.5. The exponents of Z must be
natural numbers.

7. (2+Z)2 is a polynomial in C[Z], though it is not written in the form as in Definition 4.1.
However, it can be rewritten in this form, since (2+ Z)2 = 4+ 4Z+ Z2 = 4+ 4Z+ 1Z2.
We have that deg((2 + Z)2) = 2. The leading coefficient of (1 + Z)2 is 1.

Given a polynomial p(Z) ∈ C[Z], one can evaluate the polynomial in any complex
number z ∈ C. More precisely, if p(Z) = a0 + a1Z + · · · + anZn ∈ C[Z] and z ∈ C,
then we can define p(z) = a0 + a1 · z + · · ·+ an · zn ∈ C. In this way, any polynomial
p(Z) ∈ C[Z] gives rise to a function p : C → C, defined by z 7→ p(z). A function
f : C → C is called a polynomial function, if there exists a polynomial p(Z) ∈ C[Z] such
that for all z ∈ C it holds that f (z) = p(z). Similarly, a function f : R → R is called a
polynomial function, if there exists a polynomial p(Z) ∈ R[Z] such that for all x ∈ R it
holds that f (x) = p(x).

Two polynomials p1(Z) = a0 + a1Z · · · + anZn and p2(Z) = b0 + b1Z · · · + bmZm can
be multiplied by adding all the terms aibjZi+j, where 0 ≤ i ≤ n and 0 ≤ j ≤ m. This
simply means that in order to compute p1(Z) · p2(Z), one simply multiplies each term
in p1(Z) with each term in p2(Z) and then adds up the resulting terms. Let us look at
some examples.

Example 4.3

Write the following polynomials in the form as in Definition 4.1.

1. (Z + 5) · (Z + 6).

2. (3Z + 2) · (3Z− 2).

3. (Z− 1) · (Z2 + Z + 1).
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Answer:

1. (Z + 5) · (Z + 6) = Z · (Z + 6) + 5 · (Z + 6) = Z2 + 6Z + 5Z + 30 = Z2 + 11Z + 30.

2. (3Z + 2) · (3Z− 2) = (3z)2 − 6Z + 6Z− 22 = 9Z2 − 4.

3. In this example, the only difference from the previous two is that there will be more
terms when multiplying, but otherwise there is no difference:

(Z− 1) · (Z2 + Z + 1) = Z · (Z2 + Z + 1)− (Z2 + Z + 1)
= Z3 + Z2 + Z− Z2 − Z− 1
= Z3 − 1.

Note that if a polynomial is a product of two other polynomials, say p(Z) = p1(Z) ·
p2(Z), then deg p(Z) = deg p1(Z) + deg p2(Z). In other words:

p(Z) = p1(Z) · p2(Z) ⇒ deg p(Z) = deg p1(Z) + deg p2(Z). (4-1)

If p(Z) ∈ C[Z] is a polynomial, then the equation p(z) = 0 is called a polynomial equation.
Solutions to a polynomial equation have a special name:

Definition 4.4

Let p(Z) ∈ C[Z] be a polynomial. A complex number λ ∈ C is called a root of p(Z)
precisely if p(λ) = 0.

Note that by definition, a complex number is a root of a polynomial p(Z) if and only if
it is a solution to the polynomial equation p(z) = 0.

4.2 Polynomials in R[Z] of degree two

To see why complex numbers were introduced in the first place, we will explain in this
section how to find the roots of a polynomial p(Z) ∈ R[Z] of degree two. Note that we
are assuming that p(Z) ∈ R[Z] so that the polynomial p(Z) has real coefficients. Such a
polynomial p(Z) can therefore be written in the form

p(Z) = aZ2 + bZ + c,
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where a, b, c ∈ R and a ̸= 0. To find its roots, we need to solve the polynomial equation
az2 + bz + c = 0. Now the following holds:

az2 + bz + c = 0⇔ 4a2z2 + 4abz + 4ac = 0

⇔ (2az)2 + 2(2az)b + b2 = b2 − 4ac

⇔ (2az + b)2 = b2 − 4ac.

(4-2)

The expression b2 − 4ac is called the discriminant of the polynomial aZ2 + bZ + c. We
will denote it by D. From Equation (4-2) it follows that in order to compute the roots of
the polynomial aZ2 + bZ + c, we need to take the square root of its discriminant D. If
D ≥ 0, one can use the usual square root, but now we will define the square root of any
real number:

Definition 4.5

Let D be a real number. Then we define

√
D =

{ √
D if D ≥ 0,

i
√
|D| if D < 0.

If D ≥ 0, then
√

D is exactly what we are used to and it holds that
√

D
2
= D. If D < 0, it

holds that
√

D
2
= (i

√
|D|)2 = i2

√
|D|2 = (−1)|D| = D. Therefore, for all real numbers

D it holds that
√

D
2
= D. This is exactly the property that we would like the square

root symbol to have. Moreover, all solutions to the equation z2 = D can now be given:
they are z =

√
D and z = −

√
D. Later, in Theorem 4.13, we will even be able to describe

all the solutions to equations of the form zn = w for any n ∈ N and w ∈ C. We now
return to the computation of the roots of the polynomial p(z) = az2 + bz + c. Using the
extended square root and Equation (4-2) we find that

az2 + bz + c = 0⇔ (2az + b)2 = b2 − 4ac

⇔ (2az + b) =
√

b2 − 4ac ∨ (2az + b) = −
√

b2 − 4ac

⇔ z =
−b +

√
b2 − 4ac

2a
∨ z =

−b−
√

b2 − 4ac
2a

.

(4-3)

We get the usual formula to solve an equation of degree two, but the square root of the
discriminant is now also defined if the discriminant is negative. In fact we now have
shown the following theorem.
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Theorem 4.6

The polynomial p(Z) = aZ2 + bZ + c ∈ R[Z] with a ̸= 0, has precisely the following
roots in C:

−b +
√

D
2a

and
−b−

√
D

2a
, where D = b2 − 4ac.

To be more precise, the polynomial has

1. two real roots z =
−b±

√
D

2a
if D > 0,

2. one real root z =
−b
2a

if D = 0,

3. two non-real roots z =
−b± i

√
|D|

2a
if D < 0.

The description of the roots in Theorem 4.6 is very algorithmic in nature. In fact, let us
write some pseudo-code for an algorithm:

Algorithm 6 for computing the roots of p(Z) ∈ R[Z] of degree two.
Input: p(Z) ∈ R[Z], with deg(p(Z)) = 2

1: a← coefficient of Z2 in p(Z)
2: b← coefficient of Z1 in p(Z)
3: c← coefficient of Z0 in p(Z)
4: D ← b2 − 4ac
5: if D ≥ 0 then

6: return
−b +

√
D

2a
and
−b−

√
D

2a
7: else

8: return
−b + i

√
|D|

2a
and
−b− i

√
|D|

2a

In Figure 4.1, we have drawn the graphs of some second degree polynomials. Real
roots of a second degree polynomial correspond to intersection points of the x-axis and
its graph. If there are no intersection points, the polynomial does not have real roots,
but complex roots. If D = b2 − 4ac = 0, the polynomial equation az2 + bz + c = 0 has
one solution and we say in this case that the polynomial has a double root, or a root of
multiplicity two. If D ̸= 0, one says that the roots have multiplicity one. We see that any
polynomial of degree two has two roots if the roots are counted with their multiplicities.
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We will return to roots and multiplicities in more detail in Section 4.6. If we consider
the graph of a polynomial function f : R → R coming from a degree two polynomial
in R[Z], then this graph intersects the horizontal axis twice if D > 0, once if D = 0 and
not at all if D < 0. See Figure 4.1 for an illustration.

z

p(z) D<0
D=0
D>0

Figure 4.1: A degree two polynomial p(Z) ∈ R[Z] has two real roots if D > 0, a double
root if D = 0, and two complex, two non-real roots if D < 0.

Example 4.7

Compute all complex roots of the polynomial 2Z2 − 4Z + 10 = 0.

Answer: The discriminant of the polynomial 2Z2 − 4Z + 10 equals

D = (−4)2 − 4 · 2 · 10 = −64.

According to Definition 4.5 we then find that
√

D =
√
−64 = i

√
64 = 8i.

Therefore the polynomial equation 2z2 − 4z + 10 = 0 has two non-real roots, namely

z =
−(−4) + 8i

2 · 2 = 1 + 2i ∨ z =
−(−4)− 8i

2 · 2 = 1− 2i.

Although Theorem 4.6 guarantees that 1+ 2i and 1− 2i are the roots of the polynomial 2Z2−
4Z + 10, let us check that 1 + 2i is a root by hand:

2 · (1 + 2i)2 − 4 · (1 + 2i) + 10 = 2 · (12 + 4i + (2i)2)− 4 · (1 + 2i) + 10

= 2 · (1− 4 + 4i)− 4 · (1 + 2i) + 10

= 2 · (−3 + 4i)− 4 · (1 + 2i) + 10

= (−6 + 8i)− (4 + 8i) + 10

= 0.

Hence indeed, just as the theory predicts, 1 + 2i is a root of 2Z2 − 4Z + 10.
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4.3 Polynomials with real coefficients

In the previous section, we studied degree two polynomials with real coefficients. Many
of the polynomials we will encounter later on will have real coefficients. In this section
we will therefore collect some facts about such polynomials. Complex conjugation as
introduced in Definition 3.8, will play an important role. Complex conjugation has
several nice properties. We list some of these in the following lemma.

Lemma 4.8

Let z, z1, z2 ∈ C be complex numbers. Then it holds that

1. z = z,

2. z1 + z2 = z1 + z2,

3. z1 · z2 = z1 · z2,

4. 1/z = 1/z provided z ̸= 0,

5. zn = (z)n, where n ∈ Z.

Proof. We will prove the second and third item of the lemma. Proving the remaining
items is left to the reader. For a sum of two complex numbers z1 = a+ bi and z2 = c+ di
on rectangular form it holds that

z1 + z2 = (a + c) + (b + d)i = (a + c)− (b + d)i = (a− bi) + (c− di) = z1 + z2.

For a product of two complex numbers z1 = a + bi and z2 = c + di on rectangular form
we have z1 · z2 = (ac− bd) + (ad + bc)i. Therefore

z1 · z2 = (ac− bd)− (ad + bc)i.

On the other hand,

z1 · z2 = (a− bi) · (c− di)
= ac− adi− bci + (−b) · (−d)i2

= ac− (ad + bc)i + bd · (−1)
= ac− bd− (ad + bc)i.

This shows that z1 · z2 = z1 · z2.
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Example 4.9

Express the following complex numbers on rectangular form.

1. −3 + 6i

2. π

3. −97i

Answer:

1. From the definition of the complex conjugate we find −3 + 6i = −3− 6i.

2. π = π + 0i = π − 0i = π. This illustrates the more general fact that z = z, if z is a real
number.

3. −97i = −(−97i) = 97i. It turns out that more generally z = −z for all purely imagi-
nary numbers.

Complex conjugation also interacts well with the complex exponential function.

Lemma 4.10

Let z ∈ C be a complex number and α ∈ R a real number. It holds that

1. ez = ez,

2. eiα = e−iα,

3. z = |z|e−i arg(z).

Proof. We prove the first two parts of the lemma. The third part of the lemma is illus-
trated in Figure 4.2. Suppose that z = a + bi is the rectangular form of z. From the
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definition of the complex exponential function we find that

ez = ea cos(b) + ea sin(b)i = ea cos(b)− ea sin(b)i

= ea cos(−b) + ea sin(−b)i = ea−bi = ez.

If z = iα (with α ∈ R) we get the special case

eiα = eiα = e−iα.

|z|

z=|z|ei arg(z)

0
arg(z)

|z|=|z|

z=|z|e−i arg(z)

arg(z)=− arg(z)

Figure 4.2: Polar form of a complex number z and its complex conjugate z.

Example 4.11

Write the complex number 5eiπ/3 in polar form.

Answer:

5eiπ/3 = 5 eiπ/3 = 5e−iπ/3. This illustrates the third part of the previous lemma, which
says that z = |z|e−iarg(z).
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Now let us return to our discussion of polynomials with real coefficients. The reason
we have introduced complex conjugation is the following property:

Lemma 4.12

Let p(Z) ∈ R[Z] be a polynomial with real coefficients and let λ ∈ C be a root of
p(Z). Then the complex number λ ∈ C is also a root of p(Z).

Proof. Let us write p(Z) = anZn + · · · + a1Z + a0. Since p(Z) has real coefficients, it
holds that an, . . . , a0 ∈ R. It is given that λ ∈ C is a root of p(Z) and therefore it holds
that

0 = anλn + · · ·+ a1λ + a0.

We will now show that λ is a root of p(Z) as well, by taking the complex conjugate in
this equation. We find that

0 = anλn + · · ·+ a1λ + a0.

Using this and the properties given in Lemma 4.8, we get:

0 = anλn + an−1λn−1 · · ·+ a1λ + a0

= anλn + an−1λn−1 + · · ·+ a1λ + a0

= anλn + an−1λn−1 + · · ·+ a1 λ + a0

= an(λ)
n + an−1(λ)

n−1 + · · ·+ a1 λ + a0

= an(λ)
n + an−1(λ)

n−1 + · · ·+ a1 λ + a0

= p(λ)

In the fifth equality we have used that the coefficients of the polynomial p(Z) are real
numbers, so that aj = aj for all j between 0 and n. We have now shown that p(λ) = 0
and hence can conclude that λ is a root of the polynomial p(Z) as well.

Lemma 4.12 has the following consequence: non-real roots of a polynomial with real
coefficients come in pairs. Take for example the polynomial 2Z2 − 4Z + 10. We have
seen in Example 4.7 that one of its roots is 1 + 2i. Lemma 4.12 implies that the complex
number 1− 2i then is a root of 2Z2− 4Z + 10 as well. We have seen in Example 4.7 that
this indeed is the case.
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4.4 Binomials

In this section we look at polynomials of the form Zn − w for some natural number
n ∈ N and a complex number w ∈ C different from 0. The number n is the degree of
the polynomial Zn − w. Because a polynomial of the form Zn − w only has two terms,
namely Zn and −w, it is often called a binomial. The corresponding equation zn = w is
called a binomial equation. We will give an exact expression for all roots of a binomial
Zn − w ∈ C[Z]. This means that we have to compute all z ∈ C satisfying the equation
zn = w. It turns out that the polar form of the complex number w is of great help.

Theorem 4.13

Let w ∈ C\{0}. The equation zn = w has exactly n different solutions, namely:

z = n
√
|w|ei( arg(w)

n +p 2π
n ), p ∈ {0, . . . , n− 1}.

Here n
√
|w| denotes the unique positive real number satisfying

(
n
√
|w|
)n

= |w|.

Proof. The main idea of this proof is to try to find all solutions z to the equation zn = w
in polar form. Therefore we write z = |z|eiu and we will try to determine the possible
values of |z| and u such that zn = |w|eiα. In the first place we have zn = (|z|eiu)n =
|z|neinu and this expression should be equal to |w|eiα. This holds if and only if |w| = |z|n
and einu = eiα, or in other words, if and only if |w| = |z|n and ei(nu−α) = 1. The equation
|w| = |z|n has exactly one solution for |z| ∈ R>0, namely |z| = n

√
|w|, while according

to Lemma 3.26, the equation ei(nu−α) = 1 is satisfied if and only if nu − α = arg(1).
The possible arguments of 1 are precisely the integral multiples of 2π, that is to say,
arg(1) = p2π for some integer p ∈ Z.

All solutions to zn = w are therefore of the form z = n
√
|w|ei( α

n+p 2π
n ), where p ∈ Z. In

principle, we find a solution for any choice of p ∈ Z, but when p runs through the set
{0, . . . , n− 1} we already get all different possibilities for z.

When drawn in the complex plane, the solutions to the equation zn = w form the ver-
tices of a regular n-gon with center in 0. Let us illustrate this in an example.
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Example 4.14

In this example we will find all roots of the polynomial Z4 + 8 − i8
√

3 and write them in
rectangular form.

Answer: We can use Theorem 4.13, with n = 4 and w = −(8− i8
√

3). First, we need to write
the complex number −(8− i8

√
3 = −8 + i8

√
3) in polar form. We have

| − 8 + i8
√

3| =
√
(−8)2 + (8

√
3)2 = 16

and
arg(−8 + i8

√
3) = arctan(8

√
3/(−8)) + π = 2π/3.

Therefore we find that −8 + i8
√

3 = 16ei2π/3, which is the desired polar form. According to
Theorem 4.13 all solutions to z4 = −8 + i8

√
3 are given by:

z =
4
√

16ei( 2π
3·4+p 2π

4 ), where p can be chosen freely from the set {0, 1, 2, 3}, so

z = 2ei π
6 ∨ z = 2ei 2π

3 ∨ z = 2ei 7π
6 ∨ z = 2ei 5π

3 .

Now we still need to write these roots in rectangular form. Using the formula eit = cos(t) +
i sin(t) we get:

z =
√

3 + i ∨ z = −1 + i
√

3 ∨ z = −
√

3− i ∨ z = 1− i
√

3.

As remarked after Theorem 4.13, these solutions form the vertices of a regular 4-gon (that is
to say, a square) with center in zero. This is indeed the case as shown in the following figure.

−
√

3i

−i

√
3i

i

−
√

3 −1
√

310
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4.4.1 Polynomials in C[Z] of degree two

In Section 4.2, we have seen how to find the roots of a degree two polynomials in R[Z].
Now that we know how to find the roots of binomial polynomials, we can find the
roots of a degree two polynomials in C[Z] without much additional effort. The main
observation is that for any polynomial aZ2 + bZ + c ∈ C[Z] such that a ̸= 0, Equation
(4-3) is still valid. Hence az2 + bz + c = 0 ⇔ (2az + b)2 = b2 − 4ac. We know from
Theorem 4.13 that the equation t2 = b2− 4ac has exactly two solutions, say s and seiπ =
−s. Then az2 + bz + c = 0⇔ 2az + b = s ∨ 2az + b = −s. Solving for z, we then obtain
the following result:

Theorem 4.15

Let p(Z) = aZ2 + bZ + c ∈ C[Z] be a polynomial of degree two. Further, let s ∈ C

be a solution to the binomial equation s2 = b2 − 4ac. Then p(Z) has precisely the
following roots:

−b + s
2a

and
−b− s

2a
.

Example 4.16

As an example, let us find the roots of the polynomial Z2 + 2Z + 1− i.

Answer: The discriminant of the polynomial Z2 + 2Z + 1− i is equal to 22 − 4 · 1 · (1− i) =
4i. Therefore, we first need to solve the binomial equation s2 = 4i. We have |4i| = 4 and
Arg(4i) = π/2. Using Theorem 4.13, we see that the equation s2 = 4i has solutions

2 · eπ/4 i = 2 · (cos(π/4) + i sin(π/4)) = 2 · (
√

2
2

+

√
2

2
i) =

√
2 +
√

2 i

and

2 · e(π/4+π) i = 2 · (cos(5π/4) + i sin(5π/4)) = 2 · (−
√

2
2
−
√

2
2

i) = −
√

2−
√

2 i.

Hence using Theorem 4.15, we obtain that the roots of the polynomial Z2 + Z + 1 − i are
given by

−2 +
√

2 + i
√

2
2

= −1 +

√
2

2
+

√
2

2
i and

−2−
√

2− i
√

2
2

= −1−
√

2
2
−
√

2
2

i.
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4.5 The division algorithm

In the previous section, we have seen how to find the roots of some specific polynomi-
als. To study the behaviour of roots for more general polynomials, we begin with the
following observation:

Lemma 4.17

Let p(Z) ∈ C[Z] be a polynomial and suppose that p(Z) = p1(Z) · p2(Z) for certain
polynomials p1(Z), p2(Z) ∈ C[Z]. Further, let λ ∈ C. Then λ is a root of p(Z) if and
only if λ is a root of p1(Z) or of p2(Z).

Before proving this lemma, let us relate the statement of the lemma to propositional
logic from Note 1 to clarify what really is stated. A statement like

“λ is a root of p(Z) if and only if λ is a root of p1(Z) or of p2(Z)”

in a mathematical text, is just a way to express a statement from propositional logic into
more common language. Reformulating everything in propositional logic, we simply
get the statement

λ is a root of p(Z) ⇔ λ is a root of p1(Z) ∨ λ is a root of p2(Z).

We can even go further and remove all words:

p(λ) = 0 ⇔ p1(λ) = 0 ∨ p2(λ) = 0.

It is a good habit to make sure that you understand what a mathematical statement,
when formulated in common language, really means. Here it is for example perfectly
possible that λ is a root of both p1(Z) and p2(Z), even though in language “or” often
is used in the meaning of “either one or the other, but not both”. In mathematical texts,
“or” typically has the same meaning as “∨”. With this in mind, let us continue to the
proof of the lemma:

Proof. The number λ is a root of p(Z) if and only if p(λ) = 0. Since p(Z) = p1(Z)p2(Z)
this is equivalent to saying that p1(λ)p2(λ) = 0 and therefore with the statement that
p1(λ) = 0 ∨ p2(λ) = 0. This statement is logically equivalent to saying that λ is a root
of p1(Z) or of p2(Z).
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If one wants to find all roots of a polynomial, the above lemma suggests that it is always
a good idea to try to write the polynomial as a product of polynomials of lower degree.
If p(Z) = p1(Z) · p2(Z) as in the previous lemma, one says that p1(Z) and p2(Z) are
factors of the polynomial p(Z). It is therefore useful to have an algorithm that allows
one to decide whether or not a given polynomial p1(Z) ∈ C[Z] is a factor of a given
second polynomial p(Z) ∈ C[Z]. Equation (4-1) is already of some help, since it implies
that p(Z) = p1(Z) · p2(Z) can only be true if deg p(Z) = deg p1(Z) + deg p2(Z). In
particular, p1(Z) cannot be a factor of p(Z) if deg p1(Z) > deg p(Z). However, this still
leaves the case deg p1(Z) ≤ deg p(Z) open. Before giving the algorithm that solves the
problem completely, let us first consider a few examples.

Example 4.18

1. Decide if the polynomial Z + 3 is a factor of the polynomial 2Z2 + 3Z− 9.

2. Decide if the polynomial Z + 4 is a factor of the polynomial 3Z3 + 2Z + 1.

3. Decide if the polynomial 2Z2 + Z + 3 is a factor of the polynomial 6Z4 + 3Z3 + 19Z2 +

5Z + 15.

Answer:

1. We will try to find a polynomial q(Z) ∈ C[Z] such that (Z + 3) · q(Z) = 2Z2 + 3Z− 9.
If q(Z) exists, it should have degree 1 using Equation (4-1). Hence if q(Z) exists, it
should be of the form q(Z) = b1Z + b0 for certain numbers b1, b0 ∈ C. We first try to
find b1. Without simplifying the product (Z + 3) · (b1Z + b0) we can already see that
the highest power of Z in the product is 2 and that the coefficient of Z2 in the product
is b1. This means that (Z + 3) · (b1Z + b0) = b1Z2 + terms of degree less than 2. On
the other hand we want that (Z + 3) · (b1Z + b0) = 2Z2 + 3Z − 9. We see that b1 has
to be 2. Now that we know that b1 = 2, we will determine b0. On the one hand we
want that (Z + 3) · (2Z + b0) = 2Z2 + 3Z − 9, but on the other hand we can write
(Z + 3) · (2Z + b0) = (Z + 3) · 2Z + (Z + 3) · b0. Therefore, we can conclude that

(Z + 3) · b0 = 2Z2 + 3Z− 9− (Z + 3) · 2Z = −3Z− 9. (4-4)

The important observation here is that previously we have chosen b1 in such a way that
the Z2 term in Equation (4-4) is gone. By looking at the coefficients of Z, we conclude
that b0 = −3. We have shown the implication (Z + 3) · q(Z) = 2Z2 + 3Z− 9⇒ q(Z) =
2Z− 3. A direct check verifies that indeed 2Z2 + 3Z− 9 = (Z + 3) · (2Z− 3). We can
conclude that indeed Z + 3 is a factor of 2Z2 + 3Z − 9. Since −3 is the root of Z + 3,



Note 4 4.5 THE DIVISION ALGORITHM 94

Lemma 4.17 then implies that−3 is also a root of the polynomial 2Z2 + 3Z− 9. Indeed,
we have 2 · (−3)2 + 3 · (−3)− 9 = 0.

There is a more convenient way to write down the calculations we just carried out. The
first step was to calculate b1 and to subtract b1 · (Z + 3) from 2Z2 + 3Z− 9:

Z + 3 2Z2 + 3Z− 9 2Z
2Z2 + 6Z
− 3Z− 9

The first line contains the polynomials we start with Z + 3 and 2Z2 + 3Z − 9 as well
as all terms of q(Z) we have calculated in the first step. The second line consists of the
multiple of Z + 3 which we subtracted from 2Z2 + 3Z− 9 in Equation (4-4). The third
line gives, after some simplifications, the expression 2Z2 + 3Z − 9− 2Z · (Z + 3). We
also got this in the righthand side of Equation (4-4). The next step was to determine the
b0. We again get that b0 = −3 and update the above scheme as follows:

Z + 3 2Z2 + 3Z− 9 2Z− 3
2Z2 + 6Z
− 3Z− 9
− 3Z− 9

0

This just means that 2Z2 + 3Z− 9− (Z + 3) · (2Z− 3) = 0. This zero on the righthand
side comes from the last line in the above scheme. The conclusion is therefore that
Z + 3 is a factor of the polynomial 2Z2 + 3Z− 9. More than that we can even write the
factorization down, since we showed that 2Z2 + 3Z− 9 = (Z + 3) · (2Z− 3).

2. This time, let us investigate if the polynomial Z + 4 is a factor of the polynomial 3Z3 +

2Z + 1. We try to find a polynomial q(Z) such that (Z + 4) · q(Z) = 3Z3 + 2Z + 1. We
see that q(Z) should have degree 2, that is to say q(Z) = b2Z2 + b1Z + b0, and we want
to determine its three coefficients. By looking at the highest power of Z we see that
b2 = 3. This time we directly use the schematic procedure we described in the first part
of this example. First we get:

Z + 4 3Z3 + 2Z + 1 3Z2

3Z3 + 12Z2

− 12Z2 + 2Z + 1

Now we can see that the coefficient of Z in q(Z) should be −12 and we find:

Z + 4 3Z3 + 2Z + 1 3Z2 − 12Z

3Z3 + 12Z2

− 12Z2 + 2Z + 1

− 12Z2− 48Z

50Z + 1
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We can now read of that the constant term b0 of q(Z) should be 50 and we get:

Z + 4 3Z3 + 2Z + 1 3Z2 − 12Z + 50

3Z3 + 12Z2

− 12Z2 + 2Z + 1

− 12Z2− 48Z

50Z + 1

50Z + 200

− 199

This time we do not get a zero in the last line. What the above scheme actually shows is
that 3Z3 + 2Z + 1− (Z + 4) · (3Z2 − 12Z + 50) = −199. This means that Z + 4 cannot
be a factor of 3Z3 + 2Z + 1, since then Z + 4 would also be a factor of 3Z3 + 2Z + 1−
(Z + 4) · (3Z2 − 12Z + 50) = −199. This would be impossible, since deg(Z + 4) =

1 > 0 = deg(−199). Note that −4 is not a root of the polynomial 3Z3 + 2Z + 1, since
3 · (−4)3 + 2 · (−4) + 1 = −199.

3. We state the schematic procedure only this time:

2Z2 + Z + 3 6Z4 + 3Z3 + 19Z2 + 5Z + 15 3Z2 + 5

6Z4 + 3Z3 + 9Z2

10Z2 + 5Z + 15

10Z2 + 5Z + 15

0

The conclusion is that 6Z4 + 3Z3 + 19Z2 + 5Z + 15 − (2Z2 + Z + 3) · (3Z2 + 5) = 0
and therefore that 6Z4 + 3Z3 + 19Z2 + 5Z + 15 = (2Z2 + Z + 3) · (3Z2 + 5). Hence
2Z2 + Z + 3 is a factor of the polynomial 6Z4 + 3Z3 + 19Z2 + 5Z + 15.

The algorithm described in the above examples is called polynomial division or the divi-
sion algorithm or sometimes also long division. Let us describe it in full generality.

Given as input are two polynomials p(Z), d(Z) ∈ C[Z], where d(Z) is not the zero
polynomial. What we want, is to compute two polynomials q(Z) and r(Z) in C[Z] such
that:

1. p(Z) = d(Z)q(Z) + r(Z).

2. r(Z) = 0 ∨ deg(r(z)) < deg(d(z)).

The produced polynomial q(Z) is called the quotient of p(Z) modulo d(Z), while the
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polynomial r(Z) is called the remainder of p(Z) modulo d(Z). The polynomial d(Z) is a
factor of p(Z) if and only if this remainder is the zero polynomial. Hence the division
algorithm can also be used to determine if any given polynomial divides p(Z).

To find the quotient and remainder, we start the following schematic procedure:

d(Z) p(Z) 0

If we are lucky, we have deg p(Z) < deg d(Z). In this case, we can already stop the
division algorithm and return the values q(Z) = 0 and r(Z) = p(Z). Otherwise, we
would start the long division and find a simple multiple of d(Z) that has the same
degree and leading coefficient as p(Z). Now let us denote the degree of d(Z) by m, the
leading coefficient of d(Z) by dm, and the leading coefficient of p(Z) by b. Then the
polynomial bd−1

m Zdeg p(Z)−m · d(Z) has exactly the same degree and leading coefficient
as p(Z). Hence we update the schematic procedure as follows:

d(Z) p(Z) bdm
−1Zdeg p(Z)−m

bdm
−1Zdeg p(Z)−m · d(Z)

p(Z)− bdm
−1Zdeg p(Z)−m · d(Z)

Note that the degree of the polynomial p(Z) − bdm
−1Zdeg p(Z)−m · d(Z) is strictly less

than deg p(Z), since the leading coefficients of p(Z) and bdm
−1Zdeg p(Z)−m · d(Z) are

the same and therefore cancel each other when the difference of the two polynomials is
taken. If it so happens that the degree of the resulting polynomial p(Z)− bdm

−1Zdeg p(Z)−m ·
d(Z) is strictly less than that of d(Z), we are done and can return as answer the poly-
nomials p(Z)− bdm

−1Zdeg p(Z)−m · d(Z) for r(Z) and bdm
−1Zdeg p(Z)−m · d(Z) for q(Z),

otherwise we continue to the next line.

Now suppose that we have carried out the procedure a couple of times and have arrived
at the following:

d(Z) p(Z) q∗(Z)
. . .

r∗(Z)

If deg r∗(Z) < deg d(Z), then we are already done and can return q∗(Z) and r∗(Z) as the
quotient and remainder we are looking for. Otherwise, we perform one more step in the
long division and find a simple multiple of d(Z) that has the same degree and leading
coefficient as r∗(Z). Very similarly as in the first step of the long division, now denoting
by b the leading coefficient of r∗(Z), we find that the polynomial bd−1

m Zdeg r∗(Z)−m · d(Z)
has exactly the same degree and leading coefficient as r∗(Z). Hence we update the
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schematic procedure as follows:

d(Z) p(Z) q∗(Z) + bdm
−1Zdeg r∗(Z)−m

. . .
r∗(Z)
bdm

−1Zdeg r∗(Z)−m · d(Z)
r∗(Z)− bdm

−1Zdeg r∗(Z)−m · d(Z)

Since at each step of the iteration, the degree of the polynomial at the bottom of the
scheme decreases, we will after finitely many steps arrive at the situation:

d(Z) p(Z) q(Z)
. . .

. . .
r(Z)

Here r(Z) is either the zero polynomial or deg r(Z) < deg d(Z). The quotient and re-
mainder are then the polynomials q(Z) and r(Z) found in the scheme. Let us for good
measure also formulate this algorithm in pseudo-code. To indicate that the algorithm
should keep running as long as deg r∗(Z) ≥ deg d(Z), we use what is known as a while
loop in the pseudo-code.

Algorithm 7 for performing long division in C[Z]
Input: p(Z) ∈ C[Z], d(Z) ∈ C[Z] \ {0}.

1: m← deg d(Z)
2: dm ← leading coefficient of d(Z)
3: q∗(Z)← 0 and r∗(Z)← p(Z)
4: while deg r∗(Z) ≥ m do
5: b← leading coefficient of r∗(Z)
6: q∗(Z)← q∗(Z) + bd−1

m Zdeg r(Z)−m

7: r∗(Z)← r∗(Z)− bd−1
m Zdeg r∗(Z)−m · d(Z)

8: return q∗(Z), r∗(Z)

4.6 Roots, multiplicities and factorizations

A surprising and beautiful theorem is that any polynomial p(Z) ∈ C[Z] of degree at
least 1 has a root in C. This result is often called the fundamental theorem of algebra. For
future reference, let us state the theorem.
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Theorem 4.19 Fundamental theorem of algebra

Let p(Z) ∈ C[Z] be a polynomial of degree at least one. Then p(Z) has a root λ ∈ C.

We will not prove this theorem, since the proof is quite involved. We have seen that
the theorem is true for degree two polynomials in Theorem 4.15. Note that not every
polynomial needs to have a real root. For example, the polynomial Z2 + 1 does not have
a real root, but has a pair of (non-real) complex roots, namely i and −i.

Given a polynomial, it can be difficult or downright impossible to find a useful exact
expression for its roots, but often a numerical approximation of the roots is sufficient.
One can make a precise statement on the number of roots a polynomial can have though.
We will see that if a polynomial has degree n, then it has n roots if we count the roots
in a particular way. Now that we have the division algorithm as a tool, we start our
investigation of roots of a polynomial.

Lemma 4.20

Let p(Z) ∈ C[Z] be a polynomial of degree n ≥ 1 and let λ ∈ C be a complex
number. The number λ is a root of p(Z) if and only if Z− λ is a factor of p(Z).

Proof. If Z− λ is a factor of p(Z), then there exists a polynomial q(Z) ∈ C[Z] such that
p(Z) = (Z− λ) · q(Z). Therefore it then holds that p(λ) = 0 · q(λ) = 0. This shows that
λ is a root of p(Z) if Z− λ is a factor of p(Z)

Now suppose that λ is a root of p(Z). Using the division algorithm we can find polyno-
mials q(Z) and r(Z) such that

p(Z) = (Z− λ) · q(z) + r(Z), (4-5)

where r(Z) is the zero polynomial, or deg(r(Z)) < deg(Z − λ) = 1. Since r(Z) = 0
or deg(r(Z)) < 1, we see that r(Z) actually is a constant r ∈ C. By setting Z = λ in
Equation (4-5), we get that p(λ) = r + 0 = r. Therefore we actually have shown that
p(Z) = (Z−λ) · q(Z)+ p(λ). If λ is a root of p(Z) (that is to say p(λ) = 0), we therefore
get that Z− λ is a factor of p(Z).

Using this lemma we can define the multiplicity of a root.
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Definition 4.21

Let λ be a root of a polynomial p(Z). The multiplicity of the root is defined to be the
largest natural number m ∈ N such that (Z− λ)m is a factor of p(Z). One says that
λ is a root of p(Z) of multiplicity m.

Note that Lemma 4.20 implies that any root of a polynomial has multiplicity at least 1.
A root of multiplicity two is sometimes called a double root.

Example 4.22

Decide if −3 is a root of the following polynomials. If yes, determine its multiplicity.

• p1(Z) = 2Z2 + 3Z− 9.

• p2(Z) = Z2 + 3Z + 1.

• p3(Z) = Z3 + 3Z2 − 9Z− 27.

• p4(Z) = (2Z2 + 3Z− 9) · (Z3 + 3Z2 − 9Z− 27) = 2Z5 + 9Z4 − 18Z3 − 108Z2 + 243.

Answer:

1. We have p1(−3) = 18− 9− 9 = 0. Therefore is−3 a root of the polynomial 2Z2 + 3Z−
9. We have seen in Example 4.18 that 2Z2 + 3Z − 9 = (Z + 3) · (2Z − 3). This means
that the multiplicity of the root−3 equals 1. We can also see that the factor 2Z− 3 gives
rise to another root of p1(Z), namely the root 3/2. This root also has multiplicity 1.

2. We have p2(−3) = 1. Therefore −3 is not a root of p2(Z).

3. This time we have p3(−3) = 0, so −3 is a root of p3(Z). Using the division algorithm,
we find:

Z + 3 Z3 + 3Z2− 9Z− 27 Z2 − 9
Z3 + 3Z2

− 9Z− 27
− 9Z− 27

0

Therefore it holds that Z3 + 3Z2− 9Z− 27 = (Z + 3) · (Z2− 9). The number −3 is also
a root of the polynomial Z2− 9, so the multiplicity of the root −3 is at least 2. Actually,
it holds that Z2 − 9 = (Z + 3) · (Z− 3), so Z3 + 3Z2 − 9Z− 27 = (Z + 3) · (Z2 − 9) =
(Z + 3)2 · (Z − 3). This means that the root −3 of p3(Z) has multiplicity 2. We also
showed that 3 is a root of p3(Z) and that this root has multiplicity 1.
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4. We have p4(Z) = p1(Z)p3(Z). From the first and the third part of this example, we get
that p4(Z) = (Z + 3)3 · (2Z− 3) · (Z− 3). This means that the root −3 has multiplicity
3. We also see that the numbers 3/2 and 3 are roots of p4(Z), both with multiplicity 1.
The graph of real polynomial function that p4(Z) gives rise to, is given in Figure 4.3.

−4 −2 2

−100

100

200

z

p(z)

Figure 4.3: The graph of the polynomial function p : R→ R, where p(z) = 2z5 + 9z4 −
18z3 − 108z2 + 243.

The above example illustrates that there is a one to one correspondence between factors
of degree one of a polynomial and the roots of a polynomial. The fundamental theorem
of algebra (Theorem 4.19) says that each polynomial of degree at least 1 has a root. This
has the following consequence:

Theorem 4.23

Let p(Z) = anZn + an−1Zn−1 + · · · + a1Z + a0 be a polynomial of degree n > 0.
Then there exist λ1, ..., λn ∈ C such that

p(Z) = an · (Z− λ1) · · · (Z− λn).

Proof. According to the fundamental theorem of algebra there exists a root λ1 ∈ C of the
polynomial p(Z). Using Lemma 4.20, we can write p(Z) = (Z− λ1)q1(Z) for a certain
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polynomial q1(Z). Note that deg(q1(Z)) = deg(p(Z))− 1. If q1(Z) is a constant, we are
done. Otherwise, we can apply the fundamental theory of algebra to the polynomial
q1(Z) and find a root λ2 ∈ C of q1(Z). Again using Lemma 4.20, we can write q1(Z) =
(Z − λ2) · q2(Z). This implies that p(Z) = (Z − λ1) · (Z − λ2) · q2(Z). Continuing in
this way, we can write p(Z) as a product of polynomials of degree one of the form Z− λ

times a constant c. Since the leading coefficient of p(Z) is an, this constant c is equal to
an.

Example 4.24

As an example we take the polynomial p4(Z) = 2Z5 + 9Z4 − 18Z3 − 108Z2 + 243 from Ex-
ample 4.22. We wish to write this polynomial as in Theorem 4.23. We have already seen that
p4(Z) = (Z + 3)3 · (2Z− 3) · (Z− 3). By pulling out the 2 from the factor 2Z− 3 we get:

p4(Z) = 2 · (Z + 3)3 · (Z− 3/2) · (Z− 3) = 2 · (Z + 3) · (Z + 3) · (Z + 3) · (Z− 3/2) · (Z− 3).

In the notation of Theorem 4.23 we find that λ1 = −3, λ2 = −3, λ3 = −3, λ4 = 3/2, and
λ5 = 3. This illustrates once more that the multiplicities of the roots −3, 3/2, and 3 are 3, 1,
and 1. Note that the sum of all multiplicities is equal to 5, which is the degree of p4(Z).

In fact it always holds that the sum of all multiplicities of the roots of a polynomial is
equal to its degree. In words one can therefore reformulate Theorem 4.23 as follows:
a polynomial of degree n ≥ 1 has exactly n roots, if the roots are counted with their
multiplicities. For polynomials in R[Z], Theorem 4.23 has the following consequence

Corollary 4.25

Any polynomial p(Z) ∈ R[Z] of degree at least one, can be written as the product
of degree one and degree two polynomials from R[Z].

Proof. According to Theorem 4.23 any nonzero polynomial p(Z) can be written as the
product of the leading coefficient of p(Z) and degree one factors of the form Z− λ. The
λ ∈ C is a root of the polynomial p(Z). Applying this to a polynomial p(Z) with real
coefficients, we see that the leading term is a real number as well, but the roots λ do not
have to be real numbers. However, any real root λ gives rise to a factor of degree one
with real coefficients, namely Z− λ.
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Now let λ ∈ C \R be a root of p(Z). Let us write λ = a + bi in rectangular form. Since
λ ̸∈ R, we know that b ̸= 0. Lemma 4.12 implies that then the number λ = a− bi is also
a root of p(Z). Moreover, λ ̸= λ, since b ̸= 0. Hence Z− λ and Z− λ are two distinct
factors of p(Z) if we would work in C[Z]. Now the idea is to multiply the factors Z− λ

and Z− λ together, since it turns out that (Z− λ) · (Z− λ) has real coefficients. Indeed,
we have

(Z− λ) · (Z− λ) = Z2 − (λ + λ)Z + λλ

= Z2 − (a + bi + a− bi)Z + (a + bi) · (a− bi)

= Z2 − 2aZ + (a2 + b2),

which indeed is a polynomial of degree two in R[Z] since its coefficients are real num-
bers. In this way we can transform the factorization of p(Z) in C[Z] from Theorem 4.23
into a factorization of p(Z) in R[Z] in first and second degree factors with real coeffi-
cients.

Example 4.26

Write the following polynomials as a product of degree one and degree two polynomials
with real coefficients.

1. p1(Z) = Z3 − Z2 + Z− 1

2. p2(Z) = Z4 + 4

Answer:

1. The number 1 is a root of p1(Z), since p(1) = 0. Using the division algorithm, one
can show that p1(Z) = (Z − 1) · (Z2 + 1). The polynomial Z2 + 1 does not have any
real root and therefore cannot be factorized further over the real numbers (over the
complex numbers one could: Z2 + 1 = (Z + i) · (Z − i)). The desired factorization is
therefore:

Z3 − Z2 + Z− 1 = (Z− 1) · (Z2 + 1).

2. Using the theory of Section 4.4 we can find all roots of the polynomial Z4 + 4. In this
way one can find the roots 1 + i, 1− i,−1 + i and −1− i. Therefore we have that

Z4 + 4 = (Z− (1 + i)) · (Z− (1− i)) · (Z− (−1 + i)) · (Z− (−1− i)).

As in the proof of Corollary 4.25 we can multiply pairs of complex conjugated factors
together to get rid of the complex coefficients. Then we find that

(Z− (1 + i)) · (Z− (1− i)) = Z2 − 2Z + 2
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and
(Z− (−1 + i)) · (Z− (−1− i)) = Z2 + 2Z + 2.

The desired factorization of Z4 + 4 is therefore

Z4 + 4 = (Z2 − 2Z + 2) · (Z2 + 2Z + 2).
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Note 5

Recursion and induction

5.1 Examples of a recursively defined functions

In this section, we introduce the concept of a recursively defined function. The concept
of a recursion in this context is simply to define a function or an expression using that
function or expression itself for other input values. Let us start with an example:

Example 5.1

The factorial function fac : N → N is defined by n 7→ 1 · 2 · · · n. Hence n is mapped to the
product of the first n positive integers. It is also very common to write n! instead of fac(n).
We have for example fac(1) = 1, fac(2) = 1 · 2 = 2, fac(3) = 1 · 2 · 3 = 6, fac(4) =

1 · 2 · 3 · 4 = 24, etcetera. Now note that, if we want to compute the next value, fac(5), we
can use that we already know what fac(4) is. Indeed,

fac(5) = 1 · 2 · 3 · 4 · 5 = (1 · 2 · 3 · 4) · 5 = fac(4) · 5 = 24 · 5 = 120.

In general, if for some n > 1, we already have computed fac(n − 1), we can compute the
value of fac(n) using that fac(n) = fac(n− 1) · n. This leads to the following algorithmic
description of the factorial function:
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Algorithm 8 fac(n)
Input: n ∈ Z≥1.

1: if n = 1 then
2: return 1
3: else
4: return fac(n− 1) · n.

This algorithm simply uses itself to compute fac(n). More precisely, if n = 1, it directly
returns 1 as the value for fac(1), as prescribed in line 2 of the algorithm. Graphically, we can
illustrate this as follows:

fac(1)

fac(1) = 1

return 1

If n = 2, the algorithm will go to line 4 and attempt to return fac(2− 1) · 2. However, this
requires that first the value of fac(1) is computed. Hence the algorithm will then start over,
but now for the value 1. We have already seen that the algorithm returns 1 in that case. Now
that the algorithm has arrived at the conclusion that fac(1) = 1, it can revisit line 4 and
compute that fac(2) = fac(1) · 2 = 1 · 2 = 2. Hence the algorithm returns 2. Graphically, the
situation is:

fac(2)

fac(2) = fac(1) · 2

fac(1)

fac(1) = 1

return 1

fac(2) = 1 · 2 = 2

return 2

For larger values of n more “boxes inside other boxes” will appear, since the algorithm will
need to use itself more often to compute its output for the smaller input values n − 1, n −
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2, . . . , 1 before it can return its final output. For n = 5, the following graphical representation
indicates what happens when this algorithm gets input value n = 5:
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fac(5)

fac(5) = fac(4) · 5

fac(4)

fac(4) = fac(3) · 4

fac(3)

fac(3) = fac(2) · 3

fac(2)

fac(2) = fac(1) · 2

fac(1)

fac(1) = 1

return 1

fac(2) = 1 · 2 = 2

return 2

fac(3) = 2 · 3 = 6

return 6

fac(4) = 6 · 4 = 24

return 24

fac(5) = 24 · 5 = 120

return 120
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Since the algorithm uses itself while running (in algorithmic terms one often says that the
algorithm calls itself), it is called a recursive algorithm. A recursive algorithm is simply an
algorithm that might call itself for other input values in order to compute its final output
value. Also in mathematics, recursions occur. In the context of this example, we have
actually give a recursive definition of the factorial function:

fac(n) =

{
1 if n = 1,

fac(n− 1) · n if n ≥ 2.
(5-1)

What this example illustrates is the principle of a recursive definition: to define the
values a function takes using that same function itself. Note by the way that it is also
very common to define 0! = 1, but that is another matter. Here is another example of
a recursively defined function: Let z ∈ C be a complex number and define f : N → C

recursively as:

f (n) =

{
z if n = 1,
f (n− 1) · z if n ≥ 2.

(5-2)

Then f (1) = z, since this corresponds to the case n = 1 in the recursive definition.
Further f (2) = f (1) · z, since this is what the recursive definition gives for n = 2.
Using that we already computed that f (1) = z, we may conclude that f (2) = f (1) ·
z = z · z. Finally using that z · z = z2, we see that f (2) = f (1) · z = z · z = z2.
Similarly, f (3) = z3. Therefore it is perfectly reasonable to define the expression zn for
any natural number n recursively as f (n). In previous chapters, we have used n-th
powers of complex numbers several times. Now we have a more formal definition for
it. In this light, it is also common to define z0 = 1 and z−n = 1/zn for any natural
number n. This means that we now have defined very precisely what zn means for any
integer n ∈ Z.

When attempting to define a function recursively, one should make sure afterwards that
such a recursive description actually defines the function for all values from its domain.
For the functions defined in equations (5-1) and (5-2) you can find a justification in
Example 5.6, but feel free to skip that example on a first reading. For now, let us just
show an example of a recursive description that does not work out. Let g : N→ C be a
function and suppose that

g(n) =

{
1 if n = 1,
g(n + 1) if n ≥ 2.

By definition we see that g(1) = 1, but we do not have enough information to determine
what g(2) is. If we apply the recursive definition, we would just obtain that g(2) =
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g(3). Then attempting to compute g(3), the recursion only yields that g(3) = g(4).
Continuing like this, we obtain that g(2) = g(3) = g(4) = g(5) = · · · , but we never
find out what g(2) actually is.

As a final example of a recursive definition, we consider the famous Fibonacci numbers.

Example 5.2

Let us now consider a recursive definition that looks slightly different. We are going to define
recursively a function F : N → N whose values F(1), F(2), F(3), F(4), . . . are called the
Fibonacci numbers:

F(n) =


1 if n = 1,

1 if n = 2,

F(n− 1) + F(n− 2) if n ≥ 3.

(5-3)

Let us see how this definition works in practice by computing the first Fibonacci numbers.
First of all F(1) = 1, since if n = 1, the first line of equation (5-3) applies. If n = 2, the second
line of equation (5-3) applies, so that F(2) = 1. For n = 3, the third line of equation (5-3)
applies and we find that F(3) = F(2) + F(1) = 1 + 1 = 2. Similarly for n = 4, we find that
F(4) = F(3) + F(2) = 2 + 1 = 3, using that we already have computed that F(3) = 2 before.

When dealing with a sequence of numbers, such as the Fibonacci numbers, it is quite common
to change the notation a bit: instead of writing F(n), one often writes Fn. In this notation we
would get F1 = 1, F2 = 1, F3 = 2, F4 = 3 and so on. It turns out that it is possible to derive a
closed formula expression for the Fibonacci numbers:

Fn =
1√
5
·
(

1 +
√

5
2

)n

− 1√
5
·
(

1−
√

5
2

)n

. (5-4)

We will come back to explaining how this expression comes about in a later chapter.

5.2 The towers of Hanoi

In this section, we further illustrate the usefulness of a recursive way of thinking when
analyzing a puzzle called the towers of Hanoi. The towers of Hanoi is a puzzle on a board
containing three upright sticks of equal lengths and sizes. Further there are various
circular discs all of different diameter, each with a hole in the middle so they can be
placed on a stick. In the starting position of the puzzle, all discs are stacked on the
first stick. The disc with largest diameter is stacked first, the other discs in decreasing
diameter size. The number of disks can vary. For an example with eight disks, see
Figure 5.1.
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Figure 5.1: The tower of Hanoi with eight discs.

Now the goal of the puzzle is to move the stack of discs from the first to the third stick,
stacked in the same way again from large to small. However, the challenge is that this
has to be achieved following three rules:

• Only one disc may be moved at a time.

• Only a disc on top of a stack may be moved.

• A disc may only be placed on a larger disc.

If there are only very few discs, it is not hard to solve the puzzle. If there are many discs,
the game becomes more complicated and a priori it is not even clear if there always
exists a solution. To get started, let us look at some examples with only a few discs.
First of all, if there is only one disc, we can solve the puzzle in one move:

1

Move disc 1 from stick 1 to stick 3

1
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If there are two discs, the puzzle can be solved in three moves:

2
1

Move disc 1 from stick 1 to stick 2

12

Move disc 2 from stick 1 to stick 3

1 2

Move disc 1 from stick 2 to stick 3

1
2

If there are three discs, it is still not so hard to solve the puzzle by some trial and error,
but what if there are ten discs, or a hundred? To find a solution, let us try to think in
a recursive way. We already know how to solve the puzzle for if there is only one disc
(and also if there are two discs). Perhaps, just as for the factorial function, we can figure
out what to do for a larger number of discs, say n discs, if we already would know what
to do if there are less than n discs. Suppose therefore that n ≥ 2 is a natural number and
that we already know how to solve the puzzle if there are n− 1 discs. This means that
we know how to move a stack of n− 1 discs from one stick to another stick. Then the
following strategy works to move n discs:
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n
n-1
n-2

...
3
2
1

Using that we know how to move n− 1 discs to another stick, move the stack of discs 1
to n− 1 from stick 1 to stick 2.

n n-1
n-2

...
3
2
1

Now move disc n from stick 1 to stick 3. This just takes one move.

nn-1
n-2

...
3
2
1

Again using that we know how to move n− 1 discs to another stick, move the stack of
discs 1 to n− 1 from stick 2 to stick 3.
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n
n-1
n-2

...
3
2
1

This shows that the puzzle can be solved recursively! In particular, there is a solution
for any number of discs.

5.3 The summation symbol Σ

If n is some natural number and z1, . . . , zn are complex numbers, then one can denote
their sum by an expression like z1 + z2 + · · ·+ zn or z1 + · · ·+ zn. However, it is some-
times more convenient to have a more compact notation for this: ∑n

k=1 zk. Using a re-
cursive definition, we can be very precise:

n

∑
k=1

zk =

{
z1 if n = 1,(

∑n−1
k=1 zk

)
+ zn if n > 1.

(5-5)

Using this recursive definition, we obtain precisely what we wanted. One can simply
use the definition and verify that indeed for small values of n one obtains:

n ∑n
k=1 zk

1 z1
2 z1 + z2
3 z1 + z2 + z3
4 z1 + z2 + z3 + z4

(5-6)

If f : N → C is a function, one similarly can replace the sum f (1) + f (2) + · · ·+ f (n)
by the more compact expression ∑n

k=1 f (k). Consider for example the expression ∑n
k=1 k,

that is to say, the sum of the first n natural numbers. Similarly as in Table 5-6, we obtain
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the following:
n ∑n

k=1 k
1 1
2 1 + 2 = 3
3 1 + 2 + 3 = 6
4 1 + 2 + 3 + 4 = 10

(5-7)

Having this notation, will come in handy in various later chapters, but it is also heavily
used in several other areas of mathematics and natural sciences.

The variable k in an expression like ∑n
k=1 zk is called the summation index. There is

no reason to use the variable k as such and using another variable is completely fine.
In particular one has for example ∑n

k=1 zk = ∑n
j=1 zj, since both summations amount to

adding up the numbers z1, . . . , zn. Also one may index the numbers that are to be added
in a different way. In particular, if we want to add up the numbers z2, . . . , z10, one can
simply write ∑10

k=2 zk.

5.4 Induction

In the previous section, we ended by solving the towers of Hanoi puzzle completely
by approaching the problem in a recursive way. The number of moves our solution
requires, can also be described recursively. If we denote by T(n) the number of moves
our strategy has for the puzzle with n discs, then we know that T(1) = 1 (the puzzle
with only one disc can be solved in one move), but also that T(n) = T(n − 1) + 1 +
T(n− 1) = 2T(n− 1) + 1 for n ≥ 2 (our strategy involved moving a stack of n− 1 discs
twice and a single move of the nth disc). In other words, we have

T(n) =

{
1 if n = 1,
2 · T(n− 1) + 1 if n ≥ 2.

(5-8)

For instance T(2) = 2 · 1 + 1 = 3, T(3) = 2 · 3 + 1 = 7, and T(4) = 2 · 7 + 1 = 15.
It is striking that for these small values of n, the value of T(n) is always one less than
2n. Therefore one may “guess” that T(n) = 2n − 1 for all natural number n. Let us test
this conjecture, the word typically used instead of “guess”, by computing T(5). We have
T(5) = 2 · T(4)+ 1 = 2 · 15+ 1 = 31. This confirms our conjecture that T(n) = 2n− 1 for
n = 5. On the downside, all we know now is that the conjecture is true for all n in the set
{1, 2, 3, 4, 5}. We could or course continue to verify our conjecture for more values of n
by computing T(6), T(7) and so on, but since there are infinitely many natural numbers,
there is no way we can verify the formula T(n) = 2n − 1 for all natural numbers n in
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this way. Fortunately, there is a very intuitive property of the natural numbers that can
help us out and which we state without proof:

Theorem 5.3 Induction principle

Let S be a subset of the natural numbers and assume that S has the following two
properties:

1. 1 ∈ S,

2. if n− 1 ∈ S for some arbitrary natural number n ≥ 2, then also n ∈ S.

In this case, we have S = N.

The statement in this theorem is often called the induction principle or simply induction.
Requirement 1. (1 ∈ S) is called the base case of the induction, while requirement 2. (if
n − 1 ∈ S for some natural number n, then also n ∈ S) is called the induction step.
The reason that in requirement 2., the natural number n has to be at least two, is that
otherwise n− 1 might not be a natural number. Indeed, if n = 1, then n− 1 = 0, but 0
is not in N. Requirement 2. can be reformulated in propositional logic as follows.

2. for all n ∈N≥2 : n− 1 ∈ S ⇒ n ∈ S.

Verifying requirement 2., that is to say, verifying the induction step, is typically done by
showing that n ∈ S is true if we assume that n− 1 ∈ S. When verifying the induction
step n− 1 ∈ S ⇒ n ∈ S, the assumption n− 1 ∈ S is called the induction hypothesis.
The process of verifying the two requirements is typically called a proof by induction or,
if the role of the variable n needs to be stressed, a proof by induction on n.

The induction principle is the key to understanding many statement in mathematics,
but is also central in computer science, since there it can be used to show correctness of
various algorithms, recursive definitions and computer programs.

In mathematics, it is convenient to use a reformulation of the induction principle, avoid-
ing having to work with a subset S ⊆ N. The reason is that this can be avoided using
a nice consequence of Theorem 5.3. Such consequences are often called “corollaries” in
mathematical texts and we will use the same terminology.
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Corollary 5.4

For each natural number n, let P(n) be a logical proposition. Suppose that the fol-
lowing two statements are true:

1. P(1),

2. for all n ∈N≥2 : P(n− 1)⇒ P(n).

Then P(n) is true for all n ∈N.

Proof. In order to be able to use Theorem 5.3, we use a trick by defining S = {n ∈
N | P(n)}. In other words, n ∈ S by definition precisely if P(n) is true. To be able to
conclude that P(n) is true for all natural number n, it is enough to show that S = N.
Indeed if there would exist some natural number m such that P(m) is false, then by
definition of S, we would have that m ̸∈ S and therefore that S ̸= N.

Now we use Theorem 5.3 to show that S = N. The assumption that P(1) is true, just
means that 1 ∈ S. The assumption that for all n ∈ N≥2 : P(n− 1) ⇒ P(n), means
that whenever n− 1 ∈ S, also n ∈ S. Hence the two requirements from Theorem 5.3 are
satisfied. Therefore by Theorem 5.3, we may conclude that S = N. This, as remarked
already, just means that P(n) is true for all natural numbers n.

As in Theorem 5.3, checking that P(1) is valid is called the base case of the induction,
while checking that for all n ∈ N≥2 : P(n − 1) ⇒ P(n), is called the induction
step. While carrying out the induction step, the logical proposition P(n − 1) is called
the induction hypothesis, similarly as before. Also, the statement in Corollary 5.4 as a
whole is still called the induction principle. Hence to prove a claim of the form “P(n) is
true for all natural numbers n,” we can follow the following strategy:

(i) Inform the reader that you are going to prove the claim that “P(n) is true for all
natural numbers n,” using induction on n.

(ii) Base case: Check that P(1) is valid.

(iii) Induction step: For an arbitrary natural number n ≥ 2, assume that P(n− 1) is
true and use this assumption (the induction hypothesis) to show that in that case
also P(n) is true. The challenge here is sometimes to figure out how to use the
induction hypothesis P(n− 1) to one’s advantage.
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(iv) Once the previous items are finished, inform the reader that from the induction
principle one can now conclude that P(n) is valid for all natural numbers n.

Now, let use use this strategy to prove our conjecture that T(n) = 2n − 1. In other
words, let us prove the following:

Claim: Let T : N→N satisfy the recursion

T(n) =

{
1 if n = 1,
2 · T(n− 1) + 1 if n ≥ 2.

Then for all n ∈N we have T(n) = 2n − 1.

Proof. Let P(n) be the statement T(n) = 2n− 1. We will show the claim using induction
on n.

Base case: We have T(1) = 1. Since 21 − 1 = 1, we see that T(1) = 21 − 1. Hence P(1)
is valid.

Induction step: Let n ≥ 2 be an arbitrary natural number. The induction hypothesis is
P(n− 1), which in our case just means the equation T(n− 1) = 2n−1− 1. Assuming this,
we should derive that P(n) is valid. In other words, assuming that T(n− 1) = 2n−1− 1,
we should derive that T(n) = 2n − 1. From the recursive definition of T(n), using
that n ≥ 2, we know that T(n) = 2 · T(n− 1) + 1. Combining this with the induction
hypothesis, we see that

T(n) = 2 · T(n− 1) + 1 = 2 · (2n−1 − 1) + 1 = 2 · 2n−1 − 2 · 1 + 1 = 2n − 1.

This is exactly what we needed to show.

Now that we have carried out the base case of the induction as well as the induction
step, we can conclude from the induction principle that the statement T(n) = 2n − 1 is
true for all natural numbers n.

One can actually show that the strategy we found in Section 5.2 is the best possible. In
other words, any solution of the puzzle with n discs will take at least T(n) moves. We
see that solving a ten disc version of the towers of Hanoi, already would take 210 − 1 =
1023 moves.
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The best way to get the hang of proofs by induction is to look at several examples and
then to try to do an inductive proof yourself. Let us therefore look at some more exam-
ples. Here is a famous one:

Example 5.5

Let us denote by S(n) the sum of the first n natural numbers. Informally, one often writes 1+
2 + · · ·+ n for this sum, while we can also use the summation sign and write S(n) = ∑n

k=1 k.
As we saw in Table 5-7, we have for example S(1) = 1, S(2) = 1+ 2 = 3, S(3) = 1+ 2+ 3 = 6
and S(4) = 1 + 2 + 3 + 4 = 10. The claim is that the following equality holds for all natural
number n:

S(n) =
n · (n + 1)

2
.

Note that S(n) satisfies the following recursion:

S(n) =

{
1 if n = 1,

S(n− 1) + n if n ≥ 2.

Indeed, we have already observed that S(1) = 1, while if n ≥ 2, using equation (5-5), we
obtain that

S(n) = 1 + · · ·+ n =
n

∑
k=1

k =

(
n−1

∑
k=1

k

)
+ n = S(n− 1) + n.

Now let us prove the following claim.

Claim: For n ∈ N, let S(n) = 1 + · · · + n, the sum of the first n natural numbers. Then
S(n) = n·(n+1)

2 .

Proof. We prove the claim using induction on n.

Base case: If n = 1, then S(1) = 1, while 1·(1+1)
2 = 1. Hence the formula S(n) = n·(n+1)

2 is
valid for n = 1.

Induction step: Let n ≥ 2 be an arbitrary natural number and assume as induction hypoth-
esis that S(n − 1) = (n−1)·(n−1+1)

2 . We can simplify the induction hypothesis slightly and
say that it holds that S(n− 1) = (n−1)·n

2 . Assuming the induction hypothesis and using that
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S(n) = S(n− 1) + n, we may conclude that

S(n) = S(n− 1) + n

=
(n− 1) · n

2
+ n

=
(n− 1) · n

2
+

2 · n
2

=
n2 − n

2
+

2 · n
2

=
n2 − n + 2 · n

2

=
n2 + n

2

=
n · (n + 1)

2
.

This is exactly what we needed to show, completing the induction step.

Using the induction principle, we may conclude that the formula S(n) = n·(n+1)
2 is valid for

all natural numbers n.

Example 5.6

This example is of a more theoretical nature and can be skipped on a first reading. We want
to make sure that the recursive definition we gave previously of the factorial function fac :
N → N in equation (5-1), actually was correct from a mathematical point of view. The
issue is that we never showed that fac is defined by its recursive description for any natural
number n. In other words, when writing fac : N→ N, we implicitly say that the domain of
the function is N, but how do we know? What we need to do is to show that for any natural
number n, the recursive description in equation (5-1) will give rise to the output value fac(n)
after finitely many steps.

Therefore, let P(n) be the statement that fac(n) can be computed in finitely many steps using
equation (5-1) for any natural number n. We want to show that this statement P(n) is true
for all natural numbers. The base of the induction is taken care of by the observation that
equation (5-1) immediately implies that fac(1) = 1. Now let n ≥ 2 be an arbitrary natural
number and assume as induction hypothesis that fac(n − 1) can be computed in finitely
many steps using equation (5-1). Since n ≥ 2, equation (5-1) implies that fac(n) = fac(n−
1) · n. Hence given fac(n− 1), all we need is one multiplication with n to compute fac(n).
Hence fac(n) can be computed in finitely many steps, if fac(n− 1) can. This completes the
induction step.

More generally a function f : N → B, from the natural numbers N to a given set B, can
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be defined recursively as long as f (1) is specified and for any n ≥ 2, the value f (n) can be
computed from f (n− 1). The reason is that in such cases, a very similar reasoning as the one
we just carried out for the factorial function, applies. In particular, equation (5-2) defines zn

for any natural number n.

5.5 A variant of induction

Many variants of induction exist. In this section, we would like to mention one of them:
induction starting with a different base case. So far, the base case of our induction
proofs always was the case n = 1 and after that we considered larger natural numbers
n. In some cases however, a logical statement also makes sense for other values of n.
Consider for example the statement:

A polynomial p(Z) ∈ C[Z] of degree n has at most n roots in C.

This statement also makes sense for n = 0. Indeed, for n = 0 the statement is rather
easy to verify: a polynomial p(Z) of degree zero, is just a nonzero constant p0. Indeed,
the constant p0 is nonzero precisely since in general the leading terms of a degree d
polynomial is nonzero by Definition 4.1. But then p(z) = p0 ̸= 0 for all z ∈ C, implying
that the polynomial has no roots.

Conversely, there are statements that only become true for large enough values of n.
Consider for example, the statement:

There exist n points in the plane R2 that do not lie on a line.

If n = 1, this is wrong, since there are many lines through any given point. Also if n = 2,
this is wrong, since given any two points, the line connecting them will contain these
points. However, for n ≥ 3, the statement is true. Indeed, if n ≥ 3, we can for example
choose three of the points as the vertices of an equilateral triangle and the remaining
n− 3 points arbitrarily.

Because of these kind of examples, it is convenient to have a slightly more flexible vari-
ant of induction. For a given integer a ∈ Z, we denote by Z≥a = {n ∈ Z | n ≥ a}.
For example Z≥−1 = {−1, 0, 1, 2, . . . }. With this notation in place, we can formulate the
following variant of induction, called induction with base case b:
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Theorem 5.7

Let b ∈ Z be an integer and for each integer n ≥ b, let P(n) be a logical proposition.
Suppose that the following two statements are true:

1. P(b),

2. for all n ∈ Z≥b+1 : P(n− 1)⇒ P(n).

Then P(n) is true for all n ∈ Z≥b.

Proof. Let us define the logical statement Q(n) to be P(n + b− 1). Then Q(n) is defined
for any natural number n. Indeed if n ≥ 1, then n + b− 1 ≥ b. Now we apply Corollary
5.4 to the logical statements Q(n). The first requirement from Corollary 5.4 then is that
Q(1) should be valid. However, this is fine, since Q(1) = P(b) and it is given that P(b)
is valid. The second requirement from Corollary 5.4 becomes that for all n ∈ N≥2 :
Q(n − 1) ⇒ Q(n). However, since n ≥ 2, we have n + b − 1 ≥ b + 1 and therefore
n + b− 1 ∈ Z≥b+1. Since Q(n− 1) = P(n + b− 2) and Q(n) = P(n + b− 1) and the
implication P(n + b− 2)⇒ P(n + b− 1) is valid (we know that n + b− 1 ∈ Z≥b+1), we
see that the implication Q(n− 1)⇒ Q(n) is valid. Hence the second requirement for the
logical statements Q(n) when applying Corollary 5.4 is also met. Hence the corollary
implies that Q(n) is valid for all natural numbers n. Since Q(n) = P(n + b − 1), this
means that P(n + b− 1) is valid for all natural number n. In particular P(1 + b− 1) =
P(b) is valid, P(2 + b− 1) = P(b + 1) is valid, and so on. This amount to the statement
that P(n) is valid for all integers n ≥ b, which is what we wanted to show.

Note that if we choose b = 1, we recover Corollary 5.4. The overall structure of a proof
with induction with base case b is the same as for the usual induction. One still has a
base case and an induction step. Let us consider an example of a proof by induction of
this type.

Example 5.8

Consider the inequality n + 10 ≤ n2 − n. Since a polynomial of degree two like n2 − n grows
faster than a degree one polynomial like n + 10, one should expect that if n becomes large
enough this inequality is true. Now let us denote by P(n) the statement that n + 10 ≤ n2− n.
In this case, we can define P(n) for any integer n. The statement P(4) for example is the
inequality 4 + 10 ≤ 42 − 4. This is false since in fact 14 = 4 + 10 > 42 − 4 = 12. On the other
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hand, for n = 5, the statement P(5) is true, since 15 = 5 + 10 ≤ 52 − 5 = 20. We claim that
P(n) is true for any n ∈ Z≥5 and give a proof by induction using Theorem 5.7 with b = 5:

Base case: We have already verified that P(5) is valid, so the base case is done.

Induction step: Let n ≥ 6 be an arbitrary natural number and assume as induction hypoth-
esis that P(n− 1) is valid. In particular, this means that we may assume that (n− 1) + 10 ≤
(n− 1)2 − (n− 1). Using this assumption, we should deduce that P(n) is valid. Let us first
rewrite the induction hypothesis in a more convenient form. We have (n− 1) + 10 = n + 9,
while (n− 1)2 − (n− 1) = n2 − 2n + 1− n + 1 = n2 − 3n + 2. Hence the induction hypoth-
esis amounts to assuming that the inequality n + 9 ≤ n2 − 3n + 2 is valid. But then we can
deduce:

n + 10 = (n + 9) + 1

≤ (n2 − 3n + 2) + 1

= n2 − 3n + 3

= n2 − n− 2n + 3

≤ n2 − n.

The final inequality holds, since −2n + 3 ≤ 0 for any n ≥ 6 (in fact even for any n ≥ 2). We
conclude that if P(n− 1) is true, then n + 10 ≤ n2− n, that is to say P(n), is true as well. This
is what we needed to show, thus completing the induction step.

Using induction with base case 5, we may conclude that the inequality n + 10 ≤ n2 − n is
valid for all n ∈ Z≥5.
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Note 6

Systems of linear equations

6.1 Structure of systems of linear equations

When dealing with an equation in one variable, it is very common to use the variable
x. In Example 1.17, we studied for example the equation 2|x| = 2x + 1. Often there is
not just one variable, but several. If there are two variables, one often uses x and y, if
there are three x, y and z, but what to do if there are more variables, say five variables?
In such cases it is common to use variables x1, x2, etcetera. For example, if we need five
variables, we just use x1, x2, x3, x4 and x5. We can even leave the precise number of
variables unspecified and say that we have n variables for some natural number n ∈N.
One says that one has an equation in the n variables x1, . . . , xn.

A linear equation in the n variables x1, . . . , xn is an equation of the form

a1 · x1 + · · · an · xn = b,

where a1, . . . , an, b are constants. These constants will typically be real or complex num-
bers, depending on the situation. To avoid having to specify all the time if we are work-
ing with real or complex numbers, let us introduce the following definition:
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Definition 6.1

A set F is called a field, if there is an addition + and multiplication · defined for all
pairs of elements of F in such a way that the following rules are satisfied:

1. Addition and multiplication are associative: a1 + (a2 + a3) = (a1 + a2) + a3, and
a1 · (a2 · a3) = (a1 · a2) · a3 for all a1, a2, a3 ∈ F.

2. Addition and multiplication are commutative: a1 + a2 = a2 + a1, and a1 · a2 =
a2 · a1 for all a1, a2, a3 ∈ F.

3. Distributivity of multiplication over addition holds: a1 · (a2 + a3) = a1 · a2 + a1 ·
a3 for all a1, a2, a3 ∈ F.

4. Addition and multiplication have a neutral element. More precisely, there exist
two distinct elements in F usually denoted by 0 and 1 that satisfy a + 0 = a
and a · 1 = a for all a ∈ F./

5. Additive inverses exist: for every a ∈ F, there exists an element in F, denoted
by −a and called the additive inverse of a, such that a + (−a) = 0.

6. Multiplicative inverses exist: for every a ∈ F \ {0}, there exists an element in
F, denoted by a−1 or 1/a and called the multiplicative inverse of a, such that
a · a−1 = 1.

Theorems 3.10 and 3.11 together simply state that the complex numbers form a field.
Also the real numbers R with the usual addition and multiplication form a field. There
are many more possible examples of fields, but whenever we use the symbol F or write
something like “the field F”, you can just think of R or C. Just to show that there exist
more fields, we give two examples.

Example 6.2

Let F = Q be the set of rational numbers, see Example 2.4. This set, equipped with the usual
addition and multiplication, is a field. It is called the field of rational numbers.
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Example 6.3

Let F2 = {0, 1} and define addition and multiplication as follows: 0 + 0 = 0, 0 + 1 = 1, 1 +

0 = 1, 1 + 1 = 0 and 0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0, 1 · 1 = 1. Then with this addition and
multiplication, F2 is a field. It is called the field of bits, the binary field, or also the finite field
with two elements.

Returning to our study of linear equations, we can now give a more precise definition.

Definition 6.4

A linear equation over a field F in the n variables x1, . . . , xn, is an equation of the
form

a1 · x1 + · · ·+ an · xn = b,

where a1, . . . , an, b ∈ F.
A solution to this linear equation is an n-tuple (v1, . . . , vn) ∈ Fn such that a1 · v1 +
· · ·+ an · vn = b.

We have seen the notation Fn in this definition before in Section 2.1, see equation (2-3).
It is the Cartesian product of F with itself n times. More down to earth, Fn is simply the
set of all n-tuples (v1, . . . , vn), where each coordinate is an element from F. Sometimes
the multiplication between the constant and variables are omitted. For example 2x1 has
the same meaning as 2 · x1.

There is a subtlety in Definition 6.4 that is easy to miss. If we say that we consider a
linear equation over F, we are only interested in solutions (v1, . . . , vn) that lie in Fn. In
other words, by specifying that the linear equation is over F, we implicitly say that all
the coordinates of a solution (v1, . . . , vn) must lie in F. Let us consider a few examples.

Example 6.5

1. Find a solution to the linear equation 3x1 + x2 = 5 over R.

2. Consider the linear equation x1 + x2 = 0 over C. Is (i,−i) ∈ C2 a solution to this linear
equation?

3. Consider the linear equation x1 + x2 = 0 over R. Is (i,−i) ∈ C2 a solution to this linear
equation?
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4. Consider the linear equation x1 + x2 = 0 over R. Find a solution.

Answer:

1. There are many possible solutions, but for example (v1, v2) = (0, 5) is a solution, since
3 · 0 + 5 = 5.

2. Since i + (−i) = 0, the pair (i,−i) ∈ C2 is indeed a solution to the linear equation
x1 + x2 = 0 over C.

3. Even though i + (−i) = 0, the pair (i,−i) is not a solution to the linear equation x1 +

x2 = 0 over R. The reason is that the pair (−i, i) is not an element of R2.

4. A possible solution is (1,−1). Another solution is (0, 0).

Now we arrive at the main topic of this section, namely systems of linear equations. It
is simply an extension of Definition 6.4 by not considering only one linear equation, but
several linear equations over a field F at the same time.

Definition 6.6

A system of m linear equations R1, . . . , Rm over a field F in the n variables x1, . . . , xn,
is a system of m equations of the form

R1 : a11 · x1 + · · · + a1n · xn = b1
R2 : a21 · x1 + · · · + a2n · xn = b2

...
...

Rm : am1 · x1 + · · · + amn · xn = bm

where a11, . . . , amn, b1, . . . , bm ∈ F.
A solution to this system of linear equations is an n-tuple (v1, . . . , vn) ∈ Fn such that
for all j between 1 and m it holds that aj1 · v1 + · · ·+ ajn · vn = bj.

Some explanation of the notation is in order. First of all, a double index was used for
the constants in front of the variables. The constant aij denotes the constant occurring
in equation i in front of the variable xj. For example, if we have at least two equations
and at least three variables, then a23 would denote the constant in the second equation
in front of the variable x3. In case m = 1 in Definition 6.6, we just recover the case of
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one linear equation as described in Definition 6.4.

The use of the brace { in front of the equations is just to emphasize that all equations are
considered simultaneously and that a solution to the system should satisfy all equations
at the same time. In logical terms, we can therefore write that an n-tuple (v1, . . . , vn) ∈
Fn is a solution to the system of equations as given in Definition 6.6 precisely if:

a11 · v1 + · · ·+ a1n · vn = b1 ∧ · · · ∧ am1 · v1 + · · ·+ amn · vn = bm.

Using R1, . . . , Rm as “labels” for the equations, is not necessary and often these labels
are just omitted. We will usually also omit these labels, but when developing the theory
on how to solve systems of linear equations, they can be quite convenient. To digest this
definition, let us immediately consider some examples.

Example 6.7

Determine the set of solutions to the following system of two linear equations in two variables
over R: {

x1 + 2x2 = 1
x2 = 2

This system is quite simple to solve, since the second equation already determines x2 (namely
x2 = 2). Then using this in the first equation, we see that any pair (x1, x2) that satisfies both
linear equations, will satisfy x2 = 2 and x1 = 1− 2x2 = 1− 2 · 2 = −3. Hence the system
has only one solution, namely (x1, x2) = (−3, 2). The set of all solutions is therefore given by
{(−3, 2)}.

Example 6.8

Consider the following system of linear equations over R in the variables x1, . . . , x4:{
2x1 + 5x2 + x4 = 0

3x1 − x3 = 6

Let us see how this example fits with Definition 6.6. First of all, we have two linear equations
and hence m = 2. Further, the only variables occurring in these three equations are x1, x2, x3

and x4. Hence we can choose n = 4. To determine the aij is now a matter of reading off the
constants in front of the variables. However, before we do this, it is convenient to rewrite the
system of equations a bit as follows:{

2 · x1 + 5 · x2 + 0 · x3 + 1 · x4 = 0
3 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6
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We can now read off directly that a11 = 2, a12 = 5, a13 = 0, a14 = 1, b1 = 0, a21 = 3, a22 = 0,
a23 = −1, a24 = 0 and b2 = 6. We will determine the solutions of this system of linear
equations later.

A system of m linear equations over a field F in the n variables x1, . . . , xn is called ho-
mogeneous, if for all i between 1 and m, it holds that bi = 0. Otherwise, the system is
called inhomogeneous. The system given in Example 6.8 is inhomogeneous, since in that
example b2 ̸= 0. An example of a homogeneous system of linear equations in three
variables is: {

3 · x1 + 5 · x2 + 10 · x3 = 0
5 · x1 + 2 · x2 − 2 · x3 = 0

Note that the all-zero tuple (0, 0, 0) is a possible solution to this system. More generally,
one can show that a homogeneous system of linear equations in n variables has the
all-zero n-tuple (0, . . . , 0) as solution. Let us end this section by giving two structure
theorems concerning the solution sets of systems of linear equations. One will be for
homogeneous systems, one for inhomogeneous systems.

Theorem 6.9

Let a homogeneous system of m linear equations R1, . . . , Rm over a field F in the n
variables x1, . . . , xn be given, say

a11 · x1 + · · · + a1n · xn = 0
a21 · x1 + · · · + a2n · xn = 0

...
...

am1 · x1 + · · · + amn · xn = 0

where a11, . . . , amn ∈ F. Then

1. The all-zero tuple (0, . . . , 0) ∈ Fn is a solution to the system.

2. If (v1, . . . , vn) ∈ Fn is a solution and c ∈ F, then (c · v1, . . . , c · vn) is also a
solution.

3. If (v1, . . . , vn), (w1, . . . , wn) ∈ Fn are solutions, then (v1 + w1, . . . , vn + wn) is
also a solution.

Proof. We have already remarked that the all-zero tuple is a solution to a homogeneous
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system. We will prove the third statement and leave proving the second statement to
the reader. If (v1, . . . , vn), (w1, . . . , wn) ∈ Fn are solutions, then we know that for all j
between 1 and m that:

aj1 · v1 + · · ·+ ajn · vn = 0 and aj1 · w1 + · · ·+ ajn · wn = 0.

Adding these equations, we find that

aj1 · v1 + aj1 · w1 + · · ·+ ajn · vn + ajn · wn = 0,

which can be rewritten as

aj1 · (v1 + w1) + · · ·+ ajn · (vn + wn) = 0.

The reader is encouraged to think about which properties of a field from Definition 6.1
we have used here. Since this is true for any j, we may conclude that (v1 + w1, . . . , vn +
wn) is also a solution to the given homogeneous system of linear equations.

Theorem 6.10

Let an inhomogeneous system of m linear equations R1, . . . , Rm over a field F in the
n variables x1, . . . , xn be given, say

a11 · x1 + · · · + a1n · xn = b1
a21 · x1 + · · · + a2n · xn = b2

...
...

am1 · x1 + · · · + amn · xn = bm

where a11, . . . , amn, b1, . . . , bm ∈ F and not all bi are zero. If the system does
have a solution, say (v1, . . . , vn) ∈ Fn, then any other solution is of the form
(v1 + w1, . . . , vn + wn), where (w1, . . . , wn) ∈ Fn is a solution to the corresponding
homogeneous system:

a11 · x1 + · · · + a1n · xn = 0
a21 · x1 + · · · + a2n · xn = 0

...
...

am1 · x1 + · · · + amn · xn = 0

Proof. Suppose that the system has a solution, say (v1, . . . , vn) ∈ Fn. Let (v′1, . . . , v′n) ∈
Fn be any other solution. First of all, if we define wi = v′i − vi, then by definition of
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the wi, we obtain that (v′1, . . . , v′n) = (v1 + w1, . . . , vn + wn). Hence what we need to
show is that the tuple (w1, . . . , wn) is a solution to the homogeneous system stated in
the theorem. However, we know that for all j:

aj1 · v′1 + · · ·+ ajn · v′n = bj and aj1 · v1 + · · ·+ ajn · vn = bj.

Taking the difference of these two equations, we obtain:

aj1 · v′1 − aj1 · v1 + · · ·+ ajn · v′n − ajn · vn = bj − bj,

which can be rewritten as

aj1 · (v′1 − v1) + · · ·+ ajn · (v′n − vn) = 0.

Since wi = v′i − vi, we obtain that for all j it holds that

aj1 · w1 + · · ·+ ajn · wn = 0.

This is exactly the same as saying that (w1, . . . , wn) is a solution to the homogeneous
system given in the theorem.

It is not a coincidence that Theorem 6.10 is formulated as it is. Indeed, the theorem
holds if there exists a solution to the inhomogeneous system, but there is no guarantee
that such a solution actually exists. A solution to an inhomogeneous system of linear
equations is sometimes called a particular solution. Theorem 6.10 can then in words be
described as stating that all solutions to an inhomogeneous system can be obtained as
the sum of a given particular solution (if it exists) and the solutions to the corresponding
homogeneous system.

Let us for the sake of completeness, give a small example of an inhomogeneous system
of linear equations that has no solutions:

Example 6.11

Consider the following system of two linear equations in two variables over R:{
x1 + x2 = 1
x1 + x2 = 0

.

This system is inhomogeneous, since the right-hand side of the first equation is not a zero.
This system has no solutions, since it is not possible that x1 + x2 is equal to 1 and 0 at the
same time! Indeed if that would be possible, we could conclude that 0 = 1, which would be
a contradiction.
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To make Theorems 6.9 and 6.10 constructive, we need to figure out a way to answer the
following three questions:

1. How do we describe all solutions to a homogeneous system of linear equations
explicitly?

2. How do we decide if an inhomogeneous system of linear equations has a solution?

3. If it exists, how do we explicitly find a solution to an inhomogeneous system of
linear equations?

Note that if we can answer these questions, Theorem 6.10 can be used to describe all so-
lutions to an inhomogeneous system of linear equations that have at least one solution.
In the next sections we will answer these questions.

6.2 Transforming a system of linear equations

In this section, we will come up with a procedure that transforms a given system of
linear equations into a simpler one, without changing the solutions they have. In other
words, we want to find a way to replace a possibly complicated looking system of linear
equations with another, much simpler system of linear equations, but we want that the
initial, possibly complicated, system has exactly the same solutions as the simpler one.

Before we start with that though, we will introduce a compact way to describe a system
of linear equations using what are known as matrices. For now you can think of a matrix
as a rectangular scheme containing elements from the field F one is working over. In a
later chapter, we will have a more in depth discussion of matrices.
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Definition 6.12

Given a linear system
a11 · x1 + · · · + a1n · xn = b1
a21 · x1 + · · · + a2n · xn = b2

...
...

am1 · x1 + · · · + amn · xn = bm

we denote by  a11 · · · a1n
...

...
am1 · · · amn


the coefficient matrix of the system of linear equations. The matrix a11 · · · a1n b1

...
...

...
am1 · · · amn bm


is called the augmented matrix of the system of linear equations.

Example 6.13

Let us consider the system of linear equations as given in Example 6.8. The coefficient matrix
of this system is given by [

2 5 0 1
3 0 −1 0

]
,

while the augmented matrix of this system is[
2 5 0 1 0
3 0 −1 0 6

]
.

Sometimes one writes [
2 5 0 1 0
3 0 −1 0 6

]
for the augmented matrix to emphasize that the final 0 and 6 come from the right-hand side
of the system of linear equations. This is just an esthetic choice though.
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One says that a matrix has rows and columns. A row is a horizontal slice of a matrix, a
column a vertical slice. For example, the matrix[

2 6 0 1 0
4 0 −1 0 6

]
has two rows: the first row is given by [2 6 0 1 0], while the second row is given by
[4 0 − 1 0 6]. Similarly, it has five columns, namely[

2
4

]
,
[

6
0

]
,
[

0
−1

]
,
[

1
0

]
, and

[
0
6

]
.

A matrix is said to be an m× n matrix, if it has precisely m rows and precisely n columns.
Hence the matrix we just considered is a 2× 5 matrix. If we consider the matrices in
Definition 6.12, we see that the coefficient matrix of a system of m linear equations in n
variables is an m× n matrix. Similarly, its augmented matrix is an m× (n + 1) matrix.
Indeed, it has one more column than the coefficient matrix, containing the bi from the
right-hand sides of the linear equations.

Now let us return to our goal: transforming a system of linear equations over a field F

into a simpler one, without changing the solution set. The idea is to gradually transform
any given system over F into a much simpler system, at each step making sure that the
set of solutions did not change. The operations that we will use to transform the systems
will consist of three types:

1. Interchange two equations.

2. Multiply a given equation with a nonzero constant from F.

3. Add a multiple of one equation to another.

Let us explain, what these three operations do in more detail. The first one takes two
linear equations from a given system, say Ri and Rj, and interchanges them. This means
that after the operation Rj occurs in position i and Ri in position j. We denote this
operation by Ri ↔ Rj.

Example 6.14

Let us illustrate the interchange operation on the system from Example 6.8:{
2 · x1 + 6 · x2 + 0 · x3 + 1 · x4 = 0
4 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6

.
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In this case, we can perform the operation R1 ↔ R2 and obtain the system{
4 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6
2 · x1 + 6 · x2 + 0 · x3 + 1 · x4 = 0

.

If we, which in fact is more convenient, work with the augmented matrix of this system, the
effect of the operation R1 ↔ R2 is that the augmented matrix[

2 6 0 1 0
4 0 −1 0 6

]
is replaced by [

4 0 −1 0 6
2 6 0 1 0

]
.

Hence the operation R1 ↔ R2 simply interchanges the first and the second row of the aug-
mented matrix. We will usually write this as follows:[

2 6 0 1 0
4 0 −1 0 6

]
−→

R1 ↔ R2

[
4 0 −1 0 6
2 6 0 1 0

]
.

The second operation we will use to simplify systems just multiplies one of the given
linear equations with a nonzero constant c ∈ F (in other words c ∈ F \ {0}). This simply
means that one replaces the linear equation Rj, say given by aj1x1 + · · · + ajnxn = bj,
with the linear equation caj1x1 + · · ·+ cajnxn = cbj (which is for simplicity just denoted
by c · Rj). We denote this operation by Rj ← c · Rj.

Example 6.15

Let us illustrate the operation R1 ← (1/2) · R1 on the system from Example 6.8. This amounts
to replacing the system{

2 · x1 + 6 · x2 + 0 · x3 + 1 · x4 = 0
4 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6

by {
1 · x1 + 3 · x2 + 0 · x3 + 1/2 · x4 = 0
4 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6

.

In matrix notation, we obtain[
2 6 0 1 0
4 0 −1 0 6

]
−→

R1 ← (1/2) · R1

[
1 3 0 1/2 0
4 0 −1 0 6

]
.

Hence the effect of the operation R1 ← (1/2) · R1 on the augmented matrix is that all entries
in the first row are multiplied with 1/2. We have used the arrow −→ to indicate one step
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when changing the matrix. Later on, we will gradually change the matrix and use the arrow
−→, each time an operation is used. Below the arrow, we write which operation is used (in
this case R1 ← (1/2) · R1 ).

Finally, the third operation, adding d times equation Rj to an equation Ri (where i ̸= j
and d ∈ F), simply means that the linear equation Ri given by ai1x1 + · · ·+ ainxn = bi is
replaced by the equation (ai1 + daj1)x1 + · · ·+ (ain + dajn)xn = bi + dbj. One can briefly
state this by writing that the linear equation Ri is replaced by Ri + d · Rj, or in other
words as Ri ← Ri + d · Rj.

Example 6.16

Again let us use the system from Example 6.8 to illustrate the effect of the operation R1 ←
R1 + 2 · R2. This amounts to replacing the system{

2 · x1 + 6 · x2 + 0 · x3 + 1 · x4 = 0
4 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6

by {
10 · x1 + 6 · x2 + (−2) · x3 + 1 · x4 = 12
4 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6

.

In matrix notation, we obtain[
2 6 0 1 0
4 0 −1 0 6

]
−→

R1 ← R1 + 2 · R2

[
10 6 −2 1 12
4 0 −1 0 6

]
.

Hence the effect of the operation R1 ← R1 + 2 · R2 on the augmented matrix, is that the first
row is replaced by the first row plus two times the second row.

As is clear from the examples, the effect of the three operations Ri ↔ Rj, Rj ← c · Rj,
and Ri ← Ri + d · Rj can be seen as easy operations on the rows of the augmented
matrix of the system of linear equations we started with. For this reason, they are called
elementary row operations. This is in fact also the reason why we used capital R in the
labels R1, . . . , Rm for the linear equations in our system: the R simply was inspired by
the first letter in the word “row”.

Now let us make sure that when using any of these elementary operations, the solution
set of the new system is identical to that of the original system of linear equations. In
fact, let us state this as a theorem:
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Theorem 6.17

Let R1, . . . , Rm be a system of m linear equations in n variables over a field F. Fur-
ther, let i and j be two distinct integers between 1 and m. Then any of the systems
obtained by applying one of the operations Ri ↔ Rj, Rj ← c · Rj, with c ∈ F \ {0} or
Ri ← Ri + d · Rj, with d ∈ F, has the same set of solutions as the original system.

Proof. We only prove the theorem for the elementary operation Ri ← Ri + d · Rj. The
reader is encouraged to check that the theorem is also true for the remaining two ele-
mentary operations. We need to show that the set of solutions of the system of linear
equations R1, . . . , Ri−1, Ri, Ri+1, . . . , Rm is the same as the set of solutions of the system
given by R1, . . . , Ri−1, Ri + d · Rj, Ri+1, . . . , Rm. Let us denote the first set of solutions by
S and the second set by T. We wish to show that S = T.

First of all, we claim that S ⊆ T. Therefore, let us choose arbitrary (v1, . . . , vn) ∈ S. We
want to show that (v1, . . . , vn) ∈ T. In other words, assuming that (v1, . . . , vn) ∈ Fn

is a common solution to the linear equations R1, . . . , Rm, we need to show that it also
is a common solution to the linear equations R1, . . . , Ri−1, Ri + d · Rj, Ri+1, . . . , Rm. But
then we only need to show that (v1, . . . , vn) is a solution to Ri + d · Rj. This is certainly
true, since if (v1, . . . , vn) is a common solution to Ri and Rj, then it is also a solution to
Ri + d · Rj for any constant d ∈ F. Hence (v1, . . . , vn) ∈ T. Since we chose (v1, . . . , vn) ∈
S arbitrarily, this implies that S ⊆ T.

Now we claim that T ⊆ S. We choose arbitrary (v1, . . . , vn) ∈ T and now want to
show that (v1, . . . , vn) ∈ S. This means that we may assume that (v1, . . . , vn) ∈ Fn

is a common solution to the linear equations R1, . . . , Ri−1, Ri + d · Rj, Ri+1, . . . , Rm. We
need to show that (v1, . . . , vn) is a solution to Ri. However, this is true, since Ri =
(Ri + d · Rj)− d · Rj. Hence (v1, . . . , vn) ∈ S. Since we chose (v1, . . . , vn) ∈ T arbitrarily,
this implies that T ⊆ S.

Now that we have shown that S ⊆ T and T ⊆ S, Lemma 2.6 implies that S = T, which
is what we wanted to show.

It turns out that with these three rather elementary operations in hand, we can find the
set of solutions to any system of linear equations. Using one elementary row operation,
may not simplify a system of linear equation so much, but the idea is that if we use
several elementary row operations in succession, we can transform any given system
into a much simpler one. In the next sections, we will see how, but for now, let us
consider an example.
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Example 6.18

Let us revisit Example 6.8. There we considered the following system of 2 equations in 4
variables over R: {

2 · x1 + 6 · x2 + 0 · x3 + 1 · x4 = 0
4 · x1 + 0 · x2 + (−1) · x3 + 0 · x4 = 6

.

Let us simplify this system, applying elementary row operations. As we have seen in Theo-
rem 6.17, this does not change the solution set of the system. Since it is much more compact
to work with the augmented matrix of the system, let us do that as well.

First, applying the transformation R1 ← (1/2) · R1, we obtain the augmented matrix:[
2 6 0 1 0
4 0 −1 0 6

]
−→

R1 ← (1/2) · R1

[
1 3 0 1/2 0
4 0 −1 0 6

]
.

The point of this operation, was to get a one in the first entry of the first row. This makes it
easy to eliminate the x1 variable from the second equation. In other words, in the next step
we want to create a zero in the first entry of the second row. We achieve this applying the
elementary row operation R2 ← R2 − 4 · R1, since then we obtain[

1 3 0 1/2 0
4 0 −1 0 6

]
−→

R2 ← R2 − 4 · R1

[
1 3 0 1/2 0
0 −12 −1 −2 6

]
.

Now we simplify further, by making the coefficient for x2 in the second equation equal to
one. In other words, we now want to make the second entry in the second row equal to one.
To achieve this, we apply R2 ← (−1/12) · R2:[

1 3 0 1/2 0
0 −12 −1 −2 6

]
−→

R2 ← (−1/12) · R2

[
1 3 0 1/2 0
0 1 1/12 2/12 −6/12

]
.

The fractions in the resulting matrix can actually be simplified a bit, so we could also have
written:[

1 3 0 1/2 0
0 −12 −1 −2 6

]
−→

R2 ← (−1/12) · R2

[
1 3 0 1/2 0
0 1 1/12 1/6 −1/2

]
.

The corresponding system is now nearly as simple as we can make it, but we can still use the
second equation to get rid of the x2 term in the first equation using R1 ← R1 − 3 · R2:[

1 3 0 1/2 0
0 1 1/12 1/6 −1/2

]
−→

R1 ← R1 − 3 · R2

[
1 0 −1/4 0 3/2
0 1 1/12 1/6 −1/2

]
.

The corresponding system of linear equations is:{
x1 + (−1/4) · x3 = 3/2

x2 + (1/12) · x3 + (1/6) · x4 = −1/2
.
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It is important to remember that by Theorem 6.17, the set of solutions to this last system, is
exactly the same as the set of solutions to the system we started with.

It is easy to find solutions (v1, v2, v3, v4) ∈ R4 to the last system: simply choose v3, v4 ∈ R

as you want, then use the linear equations to solve for v1 and v2. For example, if we choose
v3 = 0 and v4 = 3, then we find that v1 = (1/4)v3 + 3/2 = 3/2 and v2 = −(1/12)v3 +

(−1/6)v4 − 1/2 = −1. Hence (3/2,−1, 0, 3) is a solution to the system. More, and in fact
all, solutions can be obtained in this way: choose any value for v3 and v4 that you like and
determine the corresponding v1 and v2 from the equations v1 = (1/4)v3 + 3/2 and v2 =

−(1/12)v3 + (−1/6)v4 − 1/2.

This example shows that it can help a great deal to simplify a given system of linear
equation first, before trying to solve it.

6.3 The reduced row echelon form of a matrix

We have seen in Example 6.18 that using elementary row operations, can help to de-
scribe the solution set of a system of linear equations. What we will do now is to show
that this approach always works. Rather than working with systems of linear equations,
we will work with the coefficient and augmented matrix of the system. We have seen
that if the system consists of m linear equations in n variables, then the coefficient matrix
is an m× n matrix, while the augmented matrix is an m× (n + 1) matrix. The entries in
these matrices are from F, the field we are working over. As mentioned before, we will
typically work with either F = R, the real numbers, or F = C, the complex numbers.
The set of all m× n matrices with entries in F will be denoted by Fm×n. In formulas, we
will typically use bold face letters, such as A, B, . . . for matrices.

We begin by defining a special kind of matrix:
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Definition 6.19

Let F be a field and A ∈ Fm×n an m× n matrix with entries in F. One says that A is
in reduced row echelon form, if all of the following are fulfilled.

1. If a row of the matrix contains only zeros, it appears at the bottom of the matrix.
Such rows are called zero rows.

2. The left-most non-zero entry in any non-zero row is equal to 1. This entry is
called the pivot of the row.

3. Pivots of two non-zero rows of the matrix do not occur in the same column.
Moreover, the pivot of the upper row is further to the left than the pivot of the
lower row.

4. If a column of the matrix contains a pivot, then all other entries in that column
are 0.

A matrix satisfying the first three items, but not necessarily the fourth item, is said to be
in row echelon form.

Example 6.20

The 1× 4 matrices [0 0 0 0] and [0 0 1 5] are both in reduced row echelon form. Also the 2× 5
matrix [

1 0 −1/4 0 3/2
0 1 1/12 1/6 −1/2

]
which we obtained at the end of Example 6.18, is in reduced row echelon form.

An example of a 1× 4 matrix that is not in reduced row echelon form is: [0 0 2 0]. Indeed, the
left-most non-zero entry in the first (and only) row is not equal to 1. An example of a 3× 4
matrix that is not in reduced row echelon form is: 1 0 2 0 4

0 0 1 0 5
0 0 0 1 0

 .

This matrix is in row echelon form, but not in reduced row echelon form. The problem here
is the third column. This column contains a pivot, namely the pivot of the second row, but
apart from the pivot, this column contains another non-zero element (the 2).
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The reason that reduced row echelon forms are so important for us is the following
result:

Theorem 6.21

Let A ∈ Fm×n be a matrix. Then A can be brought into reduced row echelon form
using elementary row operations.

Proof. We will give a sketch of the proof. The strategy is to first bring the matrix in row
echelon form, and afterwards in reduced row echelon form. Let us therefore first show
that we can use elementary row operations to bring the matrix A in row echelon form.
To do this, we will use induction on m, the number of rows.

If m = 1 (the base case of the induction), then the only way A cannot be in row echelon
form, is if the row contains a non-zero entry and the left-most non-zero entry, say c, is
not equal to one. Then the operation R1 ← c−1 · R1 will bring A in row echelon form.

For the induction step, suppose m > 1 is given and that the theorem is true for (m −
1) × n matrices. If all entries in the matrix A are zero, it is already in row echelon
form (and in fact also reduced row echelon form) and we are done. Therefore, let us
now assume that the matrix A has at least one nonzero entry. We start by choosing the
smallest possible j such that the j-th column of A contains a nonzero entry. In particular,
if j > 1, then the first j− 1 columns of A are all zero columns. After this, we choose the
smallest possible i such that aij, the (i, j)-th entry of A, is nonzero. Now we perform
the operation R1 ↔ Ri. The first row of the resulting matrix has a nonzero entry in its
j-th position, say c, and zero entries in positions 1 up till j − 1. Next, we perform the
operation R1 ← c−1R1, implying that now the j-th entry in the first row has become a
1. If not all elements below this 1 are zeros, we use elementary operations of the form
Rj ← Rj + dR1 for suitably chosen d ∈ F to transform the matrix further into a matrix,
where there are only zeros below the pivot in row one. We have now transformed the
matrix A into a matrix B of the form

B =


0 · · · 0 1 ∗ · · · ∗
0 · · · 0 0 ∗ · · · ∗
...

...
...

...
...

0 · · · 0 0 ∗ · · · ∗

 .
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In this notation, the first part of the matrix B was given as
0 · · · 0
0 · · · 0
...

...
0 · · · 0

 .

This reflects the fact that the first j− 1 columns of B are zero. The notation is not meant
to suggest that the first part of B contains at least two zero columns. Indeed, if j = 2,
this part just consists of one zero column, since then j− 1 = 1. In the case that j = 1,
the first column of the matrix B is actually not zero at all, but is the column whose first
coordinate is 1 and otherwise contains zeroes.

Irrespective on the precise value of j, we now proceed by simply removing the first
row of the matrix B and denote the (m− 1)× n matrix that remains, by C. Using the
induction hypothesis, we can conclude that we can use elementary row operations to
transform the matrix C into a matrix Ĉ that is in row echelon form. Putting back the
first row from B, we find an m× n matrix, say Â, that is in row echelon form.

This concludes the inductive proof that any matrix can be brought in row echelon form
using elementary row operations. What remains to be done is to bring this matrix in
reduced row echelon form. We know by definition of row echelon form that pivots of
two non-zero rows of the matrix Â do not occur in the same column and moreover, that
the pivot of the upper row is further to the left than the pivot of a lower row. Therefore,
the entries below a pivot in the matrix Â, are zero. However, the entries above a pivot
in this matrix may not be zero. This can be achieved using elementary row operations
of the form Ri ← Ri + dRj, where row Rj contains a pivot and i < j. More precisely, we
start using the row containing the right-most pivot to create zeros above this pivot and
then work our way to the left, dealing with one pivot at the time. Once we have arrived
at the left-most pivot and carried out the sketched procedure for that pivot as well, the
obtained matrix will be in reduced row echelon form.

As an example, we can simply look at Example 6.18. There we used elementary row
operations to bring a matrix in reduced row echelon form. There are in principle many
different ways to use elementary row operations to transform a given matrix A into
reduced row echelon form. However, for a given matrix A, it turns out that the outcome
is always the same. Therefore we can talk about the reduced row echelon form of a
matrix A ∈ Fm×n. In particular, the following definition is justified:
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Definition 6.22

Let F be a field and A ∈ Fm×n a matrix. Then the rank of A, denoted by ρ(A), is
defined as the number of pivots in the reduced row echelon form of A.

The proof of Theorem 6.21 is very algorithmic in nature and can indeed be made into an
algorithm. Let us state the pseudo-code of an algorithm that computes a row echelon
form of a matrix. Note how closely it follows the first part of the proof of Theorem 6.21.
One could extend the algorithm and obtain pseudo-code of an algorithm that computes
the reduced row echelon form of a matrix, but we will not do that.

Algorithm 9 for computing a row echelon form of a matrix
Input: Positive integers m, n and an m× n matrix A ∈ Fm×n

Output: ref(A), the reduced row echelon form of A
1: if A = 0 then
2: ref(A)← 0,
3: if m = 1 and A ̸= 0 then
4: j← smallest column index such that A1 j ̸= 0
5: ref(A)← (A1 j)

−1 ·A
6: if m > 1 and A ̸= 0 then
7: j← least ℓ such that some row of A has non-zero ℓ-th entry
8: i← least i such that the ith row of A has nonzero j-th entry
9: B← the matrix obtained from A by applying R1 ↔ Ri

10: b← the ith entry of the first row of B
11: B← the matrix obtained from B by applying R1 ← b−1 · R1
12: r← the 1-st row of B
13: for i = 2...m do
14: b← the first entry of the i-th row of B
15: B← the matrix obtained from B by applying Ri ← Ri − bR1

16: C← the matrix obtained from B by deleting the first row
17: C← ref(C) (here the algorithm call itself recursively)
18: ref(A)← the matrix obtained by adding r on top of C

6.4 Computing all solutions to systems of linear equations

Up till now, we have usually written elements from Fn as n-tuples (a1, . . . , an). It is
quite common to identify Fn with Fn×1, that is to say, to identify an n-tuple with an
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n× 1 matrix. Such a matrix only contains one column. This means for example that:

(1, 2, 4, 7) is identified with


1
2
4
7

 .

A small warning is in place. Even though, we will always identify Fn and Fn×1, some
books prefer to identify Fn and F1×n.

When performing elementary row operations, we have at times multiplied rows of a
matrix with an element c from F or added one row to another. A similar operation can
be performed on columns in a matrix. In particular, it is customary to define

c ·

 a1
...

an

 =

 c · a1
...

c · an

 and

 a1
...

an

+

 a′1
...

a′n

 =

 a1 + a′1
...

an + a′n

 .

This notation, combined with the theory of reduced row echelon matrices, will make it
possible to determine whether or not a given system of linear equations has solutions,
and if yes, to write all solutions down in a systematic way. Let us start with determining
when a system has a solution.

Theorem 6.23

Let a system of m linear equations in n variables over a field F be given. Denote by
A the coefficient matrix of the system and by [A|b] its augmented matrix. Then the
system has no solution if A and [A|b] do not have the same rank.

Proof. We know from Theorem 6.21, that there exists a sequence of elementary row op-
erations that brings the matrix A in its row reduced echelon form, say Â. Since the first n
columns of the augmented matrix [A|b] are identical with those of the coefficient matrix
A, applying exactly the same elementary row operations on [A|b] yields a matrix, say
B, whose first n columns are identical with those of the reduced row echelon form of A.
Therefore we can write B = [Â|b̂] for some b̂ ∈ Fm. Let us denote the bottom entry b̂ by
b̂m. If the bottom row of Â contains a pivot, then the matrix [Â|b̂] is in reduced row ech-
elon form. But then we see that the matrices A and [A|b] have the same rank, contrary
to the assumption given in the theorem that A and [A|b] do not have the same rank.
Therefore we may assume that the bottom row of Â does not contain a pivot, which
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simply means that this row is the zero row. If the last row of Â does not contain a pivot
and b̂m = 0, then the matrix [Â|b̂] is in reduced row echelon form and we can conclude
that ρ(A) = ρ([A|b]), again leading to a contradiction. Therefore we may assume that
the bottom row of Â does not contain a pivot and that b̂m ̸= 0. But then the bottom
row of the matrix [Â|b̂] corresponds to the equation 0 · x1 + · · · 0 · xm = b̂m. Since this
equation has no solution, Theorem 6.17 implies that the system we started with has no
solution either.

Example 6.24

As in Example 6.11, consider the following system of two linear equations in two variables
over R: {

x1 + x2 = 1
x1 + x2 = 0

.

We have already seen in Example 6.11 that this system has no solutions. Let us now try to
confirm this using Theorem 6.23. The augmented matrix [A|b] is given by

[A|b] =
[

1 1 1
1 1 0

]
.

Applying the row operation R1 ↔ R2 followed by R2 ← R2 − R1, we find the reduced row
echelon form of the augmented matrix: [

1 1 0
0 0 1

]
.

Hence ρ([A|b]) = 2. The reduced row echelon form of the coefficient matrix is the matrix[
1 1
0 0

]
,

which can be obtained from A by applying the operation R2 ← R2 − R1. Hence ρ(A) = 1.
Since ρ(A) ̸= ρ([A|b]), Theorem 6.23 implies that indeed the system we started with does
not have a solution.

In case A and [A|b] do have the same rank, we can use the theory of reduced row
echelon matrices, to describe a solution explicitly. Let us look at a concrete example
first.
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Example 6.25

Let us consider a system of three linear equations in four variables over R, whose augmented
matrix already is in reduced row echelon form:

x1 + 2 · x2 + 3 · x4 = 5
x3 + 4 · x4 = 6

0 = 0
.

We can see that in this case the coefficient matrix A and augmented matrix [A|b] are

A =

 1 2 0 3
0 0 1 4
0 0 0 0

 , respectively [A|b] =

 1 2 0 3 5
0 0 1 4 6
0 0 0 0 0

 .

Since both are already in reduced row echelon form, we can immediately determine the ranks
of these matrices and conclude that ρ(A) = ρ([A|b]) = 2. Theorem 6.23 does therefore not
apply, and we cannot conclude anything about the existence of solutions yet. However, a
solution is easily determined in the following way: first rewrite the equations in the following
way: {

x1 = 5− 2 · x2 − 3 · x4

x3 = 6− 4 · x4
.

Now we can choose x2 = v2 and x4 = v4 as we want for any v2, v4 ∈ R and then compute the
resulting values for x1 and x3. For example, choosing v2 = v4 = 0, we find the solution

v1

v2

v3

v4

 =


5
0
6
0

 .

Exactly the same approach can be used in general to find a solution to a system of linear
equations, provided that coefficient and augmented matrix have the same rank. The
result is the following:
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Theorem 6.26

Let a system of m linear equations in n variables over a field F be given. Denote by A
the coefficient matrix of the system and by [A|b] its augmented matrix and suppose
that these matrices have the same rank ρ. Moreover, assume that the pivots of the
reduced row echelon form of A are at the positions (1, j1), . . . , (ρ, jρ), and that the
top ρ entries of the last column of the reduced row echelon form of [A|b] are given
by b̂1, . . . , b̂ρ. Then the m-tuple (v1, . . . , vn) defined as

vj =

{
b̂ℓ if j = jℓ for some ℓ = 1, . . . , ρ,
0 otherwise.

is a possible solution to the system.

Proof. The idea of the proof is simply to generalize the approach used in Example 6.25.
First of all, we use the equations corresponding to the rows of the reduced row echelon
form of the augmented matrix [A|b] to express the variables xj with j ∈ {j1, . . . , jℓ}
in terms of the remaining n − ρ variables. Then putting all these remaining variables
xj, j ̸∈ {j1, . . . , jℓ} equal to zero, we find that xj = b̂ℓ for j = jℓ and ℓ = 1, . . . , ρ. Hence
the n-tuple (v1, . . . , vn) is indeed a solution to the system whose augmented matrix is
the reduced row echelon form of [A|b]. Now applying Theorem 6.17, we see that this
n-tuple is also a solution to the system we started with.

Theorem 6.26 does by no means state that the indicated solution is the only solution.
Indeed, we know from Theorem 6.10 that there can be more. Recall that a solution
to an inhomogeneous system of linear equations was called a particular solution. If
the system of linear equations in inhomogeneous, Theorem 6.26 therefore gives such a
particular solution, provided it exists.

Corollary 6.27

Let a system of m linear equations in n variables over a field F be given. Denote by
A the coefficient matrix of the system and by [A|b] its augmented matrix. Then the
system has no solution if and only if A and [A|b] do not have the same rank.

Proof. The “if” part is precisely Theorem 6.23. In other words, we have already seen in
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Theorem 6.23 that if ρ(A) ̸= ρ([A|b]), then the system has no solutions. Conversely,
if ρ(A) = ρ([A|b]), then Theorem 6.26 implies that the system does have at least one
solution.

With Corollary 6.27 we can determine exactly if a given system of linear equations has
a solution. Moreover, using Theorem 6.26, we can determine at least one solution if
such solutions exist. Now recall that in Theorem 6.10, we have seen that in order to
find all solutions of an inhomogeneous system of linear equations, it is enough to find
all solutions of the corresponding homogeneous system of linear equations and one
particular solution of the inhomogeneous system. Therefore, what is left to do, is to
describe how one finds all solutions to a homogeneous system of linear equations. This
is precisely the aim of the next theorem, but let us look at an example first to get the
idea.

Example 6.28

Let us consider a system of three linear equations in four variables over R, whose augmented
matrix already is in reduced row echelon form:

x1 + 2 · x2 + 3 · x4 = 0
x3 + 4 · x4 = 0

0 = 0
.

This system is similar to the system of linear equation we studied in Example 6.25, but this
time it is homogeneous. In particular, the coefficient matrices of the system above and the
system from Example 6.25 are the same and as observed in Example 6.25, it is in reduced row
echelon form.

It is not hard to find all solutions to the system. Since the coefficient matrix of the system is
in reduced row echelon form with pivots in the first and third column, we can express x1 and
x3 in terms of x2 and x4. More concretely, we can rewrite the equations as{

x1 = −2 · x2 − 3 · x4

x3 = −4 · x4
.

Hence any solution (v1, v2, v3, v4) ∈ R4 to the system satisfies
v1

v2

v3

v4

 =


−2 · v2 − 3 · v4

v2

−4 · v4

v4

 = v2 ·


−2
1
0
0

+ v4 ·


−3
0
−4
1

 .

Therefore, we can think of v2, v4 ∈ R as parameters that we can choose arbitrarily, each choice
giving us a solution to the system of linear equations we started with. Changing notation
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from v2 to t1 and v4 to t2, we see that any solution to the system is of the form

t1 ·


−2
1
0
0

+ t2 ·


−3
0
−4
1

 (t1, t2 ∈ R)

Conversely, since a direct check shows that
−2
1
0
0

 and


−3
0
−4
1


are solution to the system, Theorem 6.9 implies that for any t1, t2 ∈ R, the expression

t1 ·


−2
1
0
0

+ t2 ·


−3
0
−4
1


is also a solution. Putting this together, we see that the solutions to the homogeneous system
of linear equations we started are precisely those (v1, v2, v3, v4) ∈ R4 such that

v1

v2

v3

v4

 = t1 ·


−2
1
0
0

+ t2 ·


−3
0
−4
1

 (t1, t2 ∈ R).

One calls such a description of the solutions, the general solution of the homogeneous system.
The solution set to the homogeneous system of linear equations

x1 + 2 · x2 + 3 · x4 = 0
x3 + 4 · x4 = 0

0 = 0

is precisely given by t1 ·


−2
1
0
0

+ t2 ·


−3
0
−4
1

 | t1, t2 ∈ R

 .

In this example, we started out with a homogeneous system of linear equations whose
coefficient matrix was in reduced row echelon form. This was the reason that we could
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determine all solutions relatively fast. From the previous sections, we know however
that even if we start with a more complicated system, we can always use elementary
row operations to transform it in such a way that the resulting coefficient matrix is
in reduced echelon form. Basically, Example 6.28 describes how to find all solutions,
once the coefficient matrix of the system of linear equations is in reduced row echelon
form. Exactly the same ideas work for any homogeneous system of linear equations:
first simplify the system by bringing its coefficient matrix in reduced row echelon form,
then follow the procedure exemplified in Example 6.28. It is possible to describe the
outcome for the general case and for the sake of completeness we do so in the following
theorem. However, when asked to solve a homogeneous system of linear equations in
practice, it is often easier not to use this theorem, but instead to use a procedure similar
to the one in Example 6.28 directly.

Theorem 6.29

Let a homogeneous system of m linear equation in n variables over a field F be given.
Denote the coefficient matrix of this system by A and let Â denote the reduced row
echelon form of A. Further, suppose that Â has ρ pivots in columns j1, . . . , jρ, and
denote by

c1 =

 c11
...

cm1

 , . . . , cn−ρ =

 c1 n−ρ
...

cm n−ρ


the n− ρ columns of Â not containing a pivot. Finally, define

v1 =

 v11
...

vn1

 , . . . , vn−ρ =

 v1 n−ρ
...

vn n−ρ


by

vj i =


−cℓi if j = jℓ for some ℓ = 1, . . . , ρ,
1 if ci is the j-th column in Â,
0 otherwise.

Then the solution set of the given homogeneous system of linear equations is given
by t1 ·

 v11
...

vn1

+ · · ·+ tn−ρ ·

 v1 n−ρ
...

vn n−ρ

 | t1, . . . , tn−ρ ∈ F

 .
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Proof. We will not prove this theorem, but only indicate the idea of the proof. First of all
Theorem 6.17 is used to conclude that the homogeneous system with coefficient matrix
A has exactly the same solution set as the homogeneous system with coefficient matrix
Â. Then the same approach as in Example 6.28 is used to describe all solutions to the
homogeneous system with coefficient matrix Â.

The expression

t1 ·

 v11
...

vn1

+ · · ·+ tn−ρ ·

 v1 n−ρ
...

vn n−ρ

 (t1, . . . , tn−ρ ∈ F)

is called the general solution of the homogeneous system with coefficient matrix A. Look-
ing back at Example 6.28, we see that the general solution of the homogeneous system
of linear equations studied in that example was shown to be equal to

t1 ·


−2
1
0
0

+ t2 ·


−3
0
−4
1

 (t1, t2 ∈ R).

Corollary 6.30

Let a homogeneous system of m linear equation in n variables over a field F be given.
Denote the coefficient matrix of this system by A. Then the homogeneous system has
only the all-zero tuple (0, . . . , 0) ∈ Fn as solution if and only if ρ(A) = n.

Proof. Theorem 6.29 implies that if the rank of A is less than n, then there exists a
nonzero solution. Conversely, if the rank of A is equal to n, the number of parame-
ters ti in the description of the solution set in Theorem 6.29, is zero. This means that
only the all-zero tuple (0, . . . , 0) is a solution.

The status is now that we can determine all solutions to any homogeneous system of
linear equations (which we called the general solution of the homogeneous system), can
determine whether or not an inhomogeneous system has a solution, and find such a so-
lution (which we called a particular solution) if it does. Hence using Theorem 6.10, we
can in this case also determine a formula describing all solutions to an inhomogeneous
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system of linear equations: it is simply the sum of a particular solution and the general
solution of the corresponding homogeneous system. This sum is called the general solu-
tion of the inhomogeneous system. Therefore we have answered in a constructive way
all three questions posed at the end of Section 6.1.

Let us finish this section with an example, where we compute the general solution of an
inhomogeneous system of linear equations.

Example 6.31

Let us return to the inhomogeneous system of linear equations considered in Example 6.25:
x1 + 2 · x2 + 3 · x4 = 5

x3 + 4 · x4 = 6
0 = 0

.

We have computed a particular solution in Example 6.25 and the general solution of the
corresponding homogeneous system in Example 6.28. Using these previous calculations in
combination with Theorem 6.10, we conclude that the general solution of the inhomogeneous
system is given by: 

5
0
6
0

+ t1 ·


−2
1
0
0

+ t2 ·


−3
0
−4
1

 (t1, t2 ∈ R).

The solution set of the inhomogeneous system is therefore:


5
0
6
0

+ t1 ·


−2
1
0
0

+ t2 ·


−3
0
−4
1

 | t1, t2 ∈ R

 .

6.5 Uniqueness of the reduced row echelon form

Previously, we have stated that a given matrix A ∈ Fm×n has a unique reduced row
echelon form. Existence was shown in Theorem 6.21 and in this section we want to
show uniqueness. This section can be skipped and is only meant for the reader who
wants to see a proof of the uniqueness of the reduced row echelon form.
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Theorem 6.32

Let F be a field and A ∈ Fm×n a matrix. Suppose that A can be transformed using a
sequence of elementary row operations to a matrix B1 in reduced row echelon form,
but using another sequence of elementary row operations to a matrix B2 in reduced
row echelon form. Then B1 = B2.

Proof. From Theorem 6.17, we know that the homogeneous systems of linear equations
with coefficient matrices A, B1, and B2 all have exactly the same solutions. The idea of
the proof is to show that the homogeneous systems of linear equations with coefficient
matrices B1 and B2 only can have the same solutions if B1 = B2. Moreover, we use
induction on n, the number of columns.

Let us start with the induction basis. If n = 1, there are only two possible reduced row
echelon forms: the m× 1 matrices

0
0
...
0

 and


1
0
...
0

 .

The first can only be a reduced row echelon form of A, if A was the zero m× 1 matrix
to begin with. Performing any elementary row operation on the zero matrix, results in
the zero matrix again. Hence if B1 or B2 is the zero matrix, then A = B1 = B2, since
they are all equal to the zero matrix. Now suppose that B1 or B2 is equal to the second
possible m × 1 reduced row echelon matrix. If B1 ̸= B2, then at least one of them is
equal to the only other m× 1 reduced row echelon form matrix, namely the zero matrix.
But we have just seen that this would imply that both B1 and B2 are equal to the zero
matrix. This contradiction shows that if B1 or B2 is equal to the second m× 1 reduced
row echelon matrix, then B1 = B2.

We continue to the induction step. Assume n > 1 and that the theorem is true for n− 1.
For any m × n matrix A, let us denote by A|n−1, the m × (n − 1) matrix one obtains
by removing the final column of A. The induction hypothesis implies that A|n−1 has a
unique reduced row echelon form. Moreover, if B is an m × n matrix in reduced row
echelon form, then also the matrix B|n−1 is in reduced row echelon form. This implies
that if B1 and B2 are two possible reduced row echelon forms of A, then the induction
hypothesis implies that B1|n−1 = B2|n−1. In other words: the first n− 1 columns of B1
B2 are identical. Only the n-th (i.e., the last) columns may be distinct. Now denote by ρ

the number of pivots occurring in B1|n−1. If the n-th column of B1 contains a pivot, this
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column contains zeros only, except in the (ρ + 1)-th position, where it contains a one.
Hence any solution (v1, . . . , vn) ∈ Fn to the homogeneous system of linear equations
with coefficient matrix B1, satisfies vn = 0. Conversely, using Theorem 6.29, if the n-
th column of B1 does not contain a pivot, there exists a solution (v1, . . . , vn) such that
vn = 1. A similar reasoning applies to the last column of B2. Using Theorem 6.17, we can
however conclude that the homogeneous systems of linear equations with coefficient
matrices B1, B2, and A all have exactly the same solution sets. It follows that either a
pivot occurs in the n-th columns of both B1 and B2, or that no pivot occurs in the n-th
columns of both B1 and B2. In the first case, we have already seen that the n-th columns
are completely determined, implying that B1 = B2. In the second case, we can conclude
that there is exactly one solution to the homogeneous system of linear equations with
coefficient matrix A that has a zero in all variables corresponding to the columns not
containing pivots, except in the n-th column, where it has a one. Using Theorem 6.29,
one sees that the coefficients of this solution completely determine the n-th column of
a reduced row echelon form of A. We conclude that B1 = B2 also in the second case
where no pivot occurs in the n-th columns of both B1 and B2.
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Note 7

Vectors and matrices

7.1 Vectors in Fn

As in the last chapter, we will denote by F a field. What we will explain works over
any field, but the reader can just think of F = R or F = C. When describing solutions
to systems of linear equations, we already worked with Fn, the set of all n-tuples with
entries in F. Also, we already explained that such an n-tuple is for convenience often
identified with an n× 1 matrix. This just means that:

(v1, . . . , vn) can also be written as

 v1
...

vn

 .

When an n-tuple is written as an n× 1 matrix, we say that the n-tuple is written in vector
form. Elements in Fn are therefore called vectors with n entries from F. If all entries of
such a vector are zero, we call that vector the zero vector of Fn.

Remark 7.1

Elements in Fn×1 are sometimes called column vectors, while likewise elements from
F1×n are called row vectors.

We have already used in the previous chapter that there is a natural way to add two
vectors v and w from Fn, and also that one can multiply a vector from Fn with an
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element c ∈ F, often called a scalar in this context, since multiplying a vector by a
constant can be thought of as scaling the vector. More precisely, addition of vectors is
defined as:  v1

...
vn

+

 w1
...

wn

 =

 v1 + w1
...

vn + wn

 (7-1)

and the product of a scalar with a vector as:

c ·

 v1
...

vn

 =

 c · v1
...

c · vn

 . (7-2)

As in the case for matrices, we will often use boldface fonts for vectors and typically
use letters such as u, v, w. For future reference, we state the following theorem, which
collects a number of properties of the vector addition and scalar multiplication:

Theorem 7.2

Let F be a field, c, d ∈ F and u, v, w ∈ Fn. Then

1. (u + v) + w = u + (v + w)

2. u + v = v + u

3. c · (d · u) = (c · d) · u

4. c · (u + v) = c · u + c · v

5. (c + d) · u = c · u + d · u

We leave the proof of this theorem out.

Now that we have vectors at out disposal, we will be able to discuss further properties
they have. We start with an example.

Example 7.3

Consider the vectors

u =

[
1
2

]
and v =

[
2
1

]
∈ R2.
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1. Compute 4 · u + 3 · v.

2. Find c and d such that c · u + d · v = 0, where 0 denotes the zero vector in R2.

Answer:

1. Using the definition of scalar multiplication and vector addition, we find

4 · u + 3 · v = 4 ·
[

1
2

]
+ 3 ·

[
2
1

]
=

[
4
8

]
+

[
6
3

]
=

[
10
11

]
.

2. We have

c · u + d · v = c ·
[

1
2

]
+ d ·

[
2
1

]
=

[
c

2c

]
+

[
2d
d

]
=

[
c + 2d
2c + d

]
.

If we want the outcome to be the zero vector, this means that we need to solve the
homogeneous system of linear equations:{

c + 2d = 0
2c + d = 0

.

Now subtracting the first equation twice from the second equation, in other words
performing the elementary row operation R2 ← R2 − 2 · R1, we obtain the system{

c + 2d = 0
0c− 3d = 0

.

We could continue and bring the system in reduced row echelon form, but it is already
clear now that the only solution is c = d = 0.

An expression like 4 · u + 3 · v is called a linear combination of the vectors u and v. More
general, given vectors v1, . . . , vn ∈ Fm and scalars c1, . . . , cn ∈ F, an expression of the
form

c1 · v1 + · · ·+ cn · vn

is called a linear combination of the vectors v1, . . . , vn. The second part of the example
implies that apparently the only linear combination of the vectors u and v given there
that is equal to the zero vector, is the linear combination 0 · u + 0 · v. In general, a
sequence of vectors can have this property. This is captured in the following:
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Definition 7.4

A sequence of vectors v1, . . . , vn ∈ Fm is called linearly independent if and only if the
equation c1 · v1 + · · · cn · vn = 0 can only hold if c1 = · · · = cn = 0.
If the sequence of vectors v1, . . . , vn ∈ Fm is not linearly independent, one says that
it is linearly dependent.

In other words, a sequence of vectors v1, . . . , vn ∈ Fm is linearly independent if and only
if the only linear combination of the vectors that is equal to the zero vector, occurs for
c1 = · · · = cn = 0. Using some logical expressions, linear independence of a sequence
of vectors v1, . . . , vn ∈ Fm can be phrased as follows:

for all c1, . . . , cn ∈ F one has: c1 · v1 + · · ·+ cn · vn = 0⇒ c1 = · · · = cn = 0. (7-3)

Similarly, linear dependence of the sequence of vectors v1, . . . , vn ∈ Fm can be phrased
in the following way:

there exist c1, . . . , cn ∈ F such that: c1 · v1 + · · · cn · vn = 0 ∧ not all ci are zero. (7-4)

Instead of saying that a sequence of vectors v1, . . . , vn is linearly (in)dependent, it is also
quite common to simply say that the vectors v1, . . . , vn are linearly (in)dependent. We
will use this way of phrasing things quite often.

Example 7.5

The sequence of vectors consisting of

u =

[
1
2

]
and v =

[
2
4

]
∈ R2

is linearly dependent. Indeed, since v = 2 · u, we see that (−2) · u + v = 0.

This example illustrates a more general principle: two vectors u and v are linearly de-
pendent if and only if one is a scalar multiple of the other. Indeed, if for example
u = c · v, then 1 · u + (−c) · v = 0, showing that the vectors are linearly dependent.
Similarly, if v = c · u, then (−c) · u + 1 · v = 0, again showing that the vectors are lin-
early dependent. Conversely if the vectors are linearly dependent, there exist c, d ∈ F,
not both zero, such that c · u + d · v = 0. If c ̸= 0, then we obtain that u = (−d/c) · v so
that v is a scalar multiple of u. If d ̸= 0, we similarly obtain that v = (−c/d) · u show-
ing that in that case u is a scalar multiple of v. Hence intuitively, one can say that two
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vectors u and v are linearly dependent if and only if there is a line through the origin
containing both u and v.

Example 7.6

The sequence of vectors consisting of

u =

[
1
2

]
and v =

[
2
1

]
∈ R2

is linearly independent. Indeed, we have seen in Example 7.3 that the equation c ·u+ d ·v = 0
implies that c = d = 0.

This example suggests that the linear independence of a sequence of vectors can be
investigated using the theory of systems of linear equations. This is indeed the case and
the general result is the following:

Lemma 7.7

Let vectors v1, . . . , vn ∈ Fm be given and let A ∈ Fm×n be the m × n matrix with
columns v1, . . . , vn, that is

A =

 | |
v1 . . . vn
| |

 .

The sequence of vectors v1, . . . , vn is linearly independent if and only if the homoge-
neous system of linear equations with coefficient matrix A only has the zero vector
0 ∈ Fn as solution.

Proof. First suppose that the sequence of vectors v1, . . . , vn is linearly independent and
let (c1, . . . , cn) ∈ Fn be a solution to the homogeneous system of linear equations with
coefficient matrix A. This system can directly be rewritten as the equation c1 · v1 + · · ·+
cn · vn = 0. Using that we assumed that the sequence of vectors v1, . . . , vn is linearly
independent, we see that (c1, . . . , cn) = (0, . . . , 0).

Now conversely, assume that the homogeneous system of linear equations with coeffi-
cient matrix A only has the zero vector 0 ∈ Fn as solution. If (c1, . . . , cn) ∈ Fn satisfies
c1 · v1 + · · ·+ cn · vn = 0, then we can immediately conclude that (c1, . . . , cn) is also a
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solution to the homogeneous system of linear equations with coefficient matrix A. But
then by assumption, we may conclude that (c1, . . . , cn) = (0, . . . , 0).

This lemma leads to a short characterisation of linear independence:

Theorem 7.8

Let v1, . . . , vn ∈ Fm be given and let A ∈ Fm×n be the matrix with columns v1, . . . , vn.
The sequence of vectors v1, . . . , vn is linearly independent if and only if the matrix
A has rank n.

Proof. This follows from Corollary 6.30 and Lemma 7.7.

Example 7.9

Consider the following three vectors in C3:

u =

 1
0

1 + i

 , v =

 0
1 + i

0

 , and w =

 1 + i
−1 + 5i

2i

 .

1. Are the vectors u, v, w linearly independent?

2. Are the vectors u, v linearly independent?

3. Is the vector u linearly independent?

Answer: The general strategy for this type of questions is to use Theorem 7.8. Recall that
in order to compute the rank of a matrix, it is by Definition 6.22, the definition of the rank
of a matrix, enough to compute its reduced row echelon form. Now let us answer the three
questions, one at the time.

1. Theorem 7.8 implies that to find the answer, we should determine the rank of the matrix

A =

 1 0 1 + i
0 1 + i −1 + 5i

1 + i 0 2i

 .
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We have 1 0 1 + i
0 1 + i −1 + 5i

1 + i 0 2i

 −→
R3 ← R3 − (1 + i) · R1

 1 0 1 + i
0 1 + i −1 + 5i
0 0 0


−→

R2 ← (1 + i)−1 · R2

 1 0 1 + i
0 1 2 + 3i
0 0 0

 .

We can conclude that ρ(A) = 2, which is less than three, the number of vectors we are
considering. Hence the vectors u, v, w are linearly dependent.

2. In this case, we should compute the rank of the matrix

B =

 1 0
0 1 + i

1 + i 0

 .

Using exactly the same elementary row operations as when solving the first questions,
we find that the reduced row echelon form of B is the matrix 1 0

0 1
0 0

 .

In particular, ρ(B) = 2, which is equal to the number of vectors we are considering.
Hence the vectors u, v are linearly independent.

3. If we only consider the vector u, we need to determine the rank of the matrix

C =

 1
0

1 + i

 .

This matrix has rank one, since the one column this matrix has, is not the zero column.
We can conclude that the sequence consisting of the vector u is linearly independent.
In general, a sequence consisting of only one vector u ∈ Fm is linearly independent if
and only if u ̸= 0.

7.2 Matrices and vectors

When studying systems of linear equations, we introduced the notion of a matrix. A
matrix A ∈ Fm×n was introduced as a rectangular scheme containing m× n elements
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from a given field F:

A =

 a11 . . . a1n
...

...
am1 . . . amn

 .

Sometimes one just writes A = [aij]1≤i≤m, 1≤j≤m for brevity. When a matrix is given in
this form, the element aij, sometimes also written as ai,j, is the entry in row i and column
j of the matrix A. It is also common to denote this entry by Aij or Ai,j. The matrix A
given above has m rows: [ai1 . . . ain] for i = 1, . . . , m and n columns: a1j

...
amj

 for j = 1, . . . , n.

We will call rows of a matrix row vectors and similarly columns of a matrix column vectors.

It turns out to be extremely useful to be able to multiply a matrix with a vector. We
define the following:

Definition 7.10

Let A = (aij)1≤i≤m, 1≤j≤m ∈ Fm×n be a matrix and v = (v1, . . . , vn) ∈ Fn a vector.
Then we define A · v ∈ Fm as follows: a11 . . . a1n

...
...

am1 . . . amn

 ·
 v1

...
vn

 =

 a11 · v1 + · · · a1n · vn
...

am1 · v1 + · · · amn · vn



Note that we can not multiply any matrix with any vector. Their sizes have to “fit”:
the number of columns of the matrix has to be the same as the number of entries in
the vector. If this is not the case, the corresponding matrix-vector multiplication is not
defined.

Example 7.11

Let

A =

[
1 2 3
4 5 6

]
and v =

 7
−1
−2

 .
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Compute A · v.

Answer: Using Definition 7.10, we find that:

A · v =

[
1 2 3
4 5 6

]
·

 7
−1
−2

 =

[
1 · 7 + 2 · (−1) + 3 · (−2)
4 · 7 + 5 · (−1) + 6 · (−2)

]
=

[
−1
11

]
.

Note that the matrix vector product occurs very naturally when considering a system
of linear equations. A system of linear equations

a11 · x1 + · · · + a1n · xn = b1
...

...
am1 · x1 + · · · + amn · xn = bm

can be expressed as  a11 · · · a1n
...

...
am1 · · · amn

 ·
 x1

...
xn

 =

 b1
...

bm

 . (7-5)

Now that we have defined a matrix vector product, one may wonder if more generally,
matrices can be multiplied with each other as well. The answer turns out to be yes,
provided again that their sizes fit. More precisely, we can do the following:

Definition 7.12

Let A ∈ Fm×n and B ∈ Fn×ℓ. Suppose that the columns of B are given by b1, . . . , bℓ ∈
Fn, that is to say, suppose that

B =

 | |
b1 . . . bℓ

| |

 .

Then we define

A · B =

 | |
A · b1 . . . A · bℓ

| |

 .
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Note that the matrix product A · B is defined only if the number of columns of A is the
same as the number of rows of B. If these numbers match, then A · B is a matrix with m
rows and ℓ columns. In other words, if A ∈ Fm×n and B ∈ Fn×ℓ, then A · B ∈ Fm×ℓ.

Another way to look at the definition of the matrix product is to give a formula for the
entries of the product A ·B one at the time. Let us say, that we want to find a formula for
the (i, j)-th entry of the product, (A · B)i,j, that is to say, the entry in row i and column
j. This amounts to determining the i-th entry of the product A · bj, where bj is the j-th
column of B. This in turn is exactly the same as the outcome of multiplying the i-th row
of the matrix A with the j-th column of the matrix B. Since the i-th row of A can be
written as equals [ai1 . . . ain] and the j column of B as

bj =

 b1j
...

bmj

 ,

we see that

(A · B)i,j = [ai1 . . . ain] ·

 b1j
...

bnj

 = ai1 · b1j + · · ·+ ain · bnj.

Using the summation symbol from Section 5.3, we can rewrite this formula as follows:

(A · B)i,j =
n

∑
r=1

air · brj. (7-6)

Example 7.13

In this example, let F = R and write

A =

[
1 2 3
4 5 6

]
and B =

 7 0 0
−1 1 0
−2 0 1

 .

Compute, if possible, the matrix products A · B and B ·A.

Answer: First consider the matrix product A · B. Since A ∈ R2×3 and B ∈ R3×3, the product
A · B is defined. We have already computed the product of A and the first column of B in
Example 7.11, so we will not repeat those computations. Taking that into account, we obtain
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that:

A · B =

[
1 2 3
4 5 6

]
·

 7 0 0
−1 1 0
−2 0 1

 =

[
−1 1 · 0 + 2 · 1 + 3 · 0 1 · 0 + 2 · 0 + 3 · 1
11 4 · 0 + 5 · 1 + 6 · 0 4 · 0 + 5 · 0 + 6 · 1

]

=

[
−1 2 3
11 5 6

]
.

Now let us consider the matrix product B ·A. Since B has three columns and A has two rows,
the matrix product B ·A is not defined.

This example shows that in general A ·B ̸= B ·A. In other words, matrix multiplication
is not commutative. In fact, as we have just seen, it may even happen that one of the
products is not defined. Even if both products are defined, the order of the matrices still

matters and A · B ̸= B ·A in general. Consider for example A = [1 0] and B =

[
0
1

]
.

Then

A · B = [1 0] ·
[

0
1

]
= 1 · 0 + 0 · 1 = 0 and B ·A =

[
0
1

]
· [1 0] =

[
0 0
1 0

]
.

Let us define addition of matrices as well.

Definition 7.14

Let A, A′ ∈ Fm×n be given, say

A =

 a11 . . . a1n
...

...
am1 . . . amn

 and A′ =

 a′11 . . . a′1n
...

...
a′m1 . . . a′mn

 .

Then we define A + A′ as follows: a11 . . . a1n
...

...
am1 . . . amn

+

 a′11 . . . a′1n
...

...
a′m1 . . . a′mn

 =

 a11 + a′11 . . . a1n + a′1n
...

...
am1 + a′m1 . . . amn + a′mn

 .

Addition of matrices is only defined if they have the same sizes. On the level of entries,
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we can see that (A + A′)i,j = aij + a′ij. Addition and multiplication of matrices satisfy
many similar rules as summation and multiplication of real or complex numbers. We
collect some in the following theorem. The main exception, as already mentioned be-
fore, is that matrix multiplication is not commutative in general.

Theorem 7.15

Let F be a field. Then

1. A + A′ = A′ + A for all A, A′ ∈ Fm×n.

2. (A + A′) + A′′ = A + (A′ + A′′) for all A, A′, A′′ ∈ Fm×n.

3. A · (B ·C) = (A · B) ·C for all A ∈ Fm×n, B ∈ Fn×ℓ, and C ∈ Fℓ×k.

4. A · (B + B′) = A · B + A · B′ for all A ∈ Fm×n and B, B′ ∈ Fn×ℓ.

5. (A + A′) · B = A · B + A′ · B for all A, A′ ∈ Fm×n and B ∈ Fn×ℓ.

Proof. We will prove the third item only and leave the other parts to the reader. Using
equation (7-6) for the product (B ·C), we obtain that (B ·C)s,j = ∑ℓ

r=1 bsr · crj. Using this
and equation (7-6) for the product A · (B ·C) and rewriting the resulting expression, we
see that:
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(A · (B ·C))i,j =
n

∑
s=1

ais · (B ·C)s,j

=
n

∑
s=1

ais ·
ℓ

∑
r=1

bsr · crj

=
n

∑
s=1

ℓ

∑
r=1

ais · (bsr · crj)

=
n

∑
s=1

ℓ

∑
r=1

(ais · bsr) · crj

=
ℓ

∑
r=1

n

∑
s=1

(ais · bsr) · crj

=
ℓ

∑
r=1

(
n

∑
s=1

ais · bsr

)
· crj

=
ℓ

∑
r=1

(B ·C))i,r · crj

= ((A · B) ·C)i,j.

We finish this section by explaining two more operations on matrices. We have already
seen that vectors can be multiplied with a scalar. The generalisation to matrices is im-
mediate: for c ∈ F and

A =

 a11 · · · a1n
...

...
am1 · · · amn

 ∈ Fm×n, we define c ·A =

 c · a11 · · · c · a1n
...

...
c · am1 · · · c · amn

 . (7-7)

Finally, there is a way to reverse the roles of rows and columns in a matrix A. This is
simply done by taking the transpose of a matrix, which is denoted by AT. More precisely,
given

A =

 a11 . . . a1n
...

...
am1 . . . amn

 ∈ Fm×n, we define AT =

 a11 . . . am1
...

...
a1n . . . amn

 . (7-8)
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Example 7.16

Let the matrix

A =

[
1 2 3
4 5 6

]
∈ R2×3

be given. Compute AT.

Answer:

We have

AT =

[
1 2 3
4 5 6

]T

=

 1 4
2 5
3 6

 .

Note that if A ∈ Fm×n, then AT ∈ Fn×m. On the level of entries, we simply have that
the (i, j)-th entry of AT is equal to the (j, i)-th entry of A.

The transpose behaves well with respect to matrix additions and matrix products. More
precisely, we have the following theorem.

Theorem 7.17

Let F be a field. Then

1. (AT)T = A for all A ∈ Fm×n.

2. (A + A′)T = AT + (A′)T for all A, A′ ∈ Fm×n.

3. (A · B)T = BT ·AT for all A ∈ Fm×n and B ∈ Fn×ℓ.

Proof. We only show the first item. In general, the (i, j)-th entry of BT is equal to the
(j, i)-th entry of B for any matrix B. Applying this first for the matrix AT, then for the
matrix A, we obtain that ((AT)T)i,j = (AT)j,i = (A)i,j. This shows that the matrices AT

and A have exactly the same entries and hence that they are equal.

It is important to remember the order of multiplication in item 3 before and after trans-
posing. In some sense, transposing reverses the order of the terms in a product. There
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is a good reason for this. Given matrices A ∈ Fm×n and B ∈ Fn×ℓ, the product AT · BT

is in general not even defined! Indeed, the number of columns in AT is m, while the
number of rows in BT is ℓ. However, the product BT ·AT makes perfect sense, since the
number of columns in BT is n, which is the same as the number of rows in AT. Though
these observations do not prove item three from Theorem 7.17, they do explain why it
is quite natural that the multiplication order is given as it is.

7.3 Square matrices

If the number of rows and columns of a matrix are the same, it is called a square matrix.
In other words, a matrix A is a square matrix, if A ∈ Fn×n for some positive integer n.
Given n, the n × n matrix In, called the identity matrix, is the matrix having 1’s on its
main diagonal, and 0’s everywhere else. So for n = 4, we have for example

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

This matrix is called the identity matrix because it has no effect on a vector when mul-
tiplied (from the left) with that vector. More precisely, a direct calculation shows that
In · v = v for all v ∈ Fn. Hence the function L : Fn → Fn defined by L(v) = In · v is just
the identity function. With this matrix in place, the following definition makes sense:

Definition 7.18

A square matrix A ∈ Fn×n is called invertible if there exists a matrix B ∈ Fn×n such
that

A · B = B ·A = In.

The matrix B, if it exists, is called the inverse matrix of A and denoted by A−1.

Inverse matrices will appear in many situations later on, but already when solving some
systems of linear equations, they can be handy. Suppose for example, that one wants
to solve the system of linear equations A · x = b, with a square coefficient matrix A,
vector of variables x = (x1, . . . , xn) and righthand-side b = (b1, . . . , bn). If the coefficient
matrix A has an inverse, we can multiply from the left with A−1 and simplify: A−1 · (A ·
x) = (A−1 · A) · x = In · x. But this means that the equation A · x = b implies that
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x = A−1 · b. Conversely, if x = A−1 · b, then by multiplying with A from the left, we
obtain that A · x = A · (A−1 · b) = (A ·A−1) · b = In · b = b. Hence we have shown
that:

A · x = b if and only if x = A−1 · b, provided A−1 exists. (7-9)

This observation actually has a nice consequence about the rank of invertible matrices:

Lemma 7.19

Let A ∈ Fn×n be given and suppose that its inverse matrix exists. Then ρ(A) = n.

Proof. Equation (7-9) implies that the homogeneous system of linear equations A · x = 0
only has the solution x = A−1 · 0 = 0. But then by Corollary 6.30, the rank of A is equal
to n.

More is true, but we will return to that later. The question is now how to figure out
when a matrix has an inverse and if it does, how to compute it. We will first find an
algorithmic answer and after that describe a theoretical characterisation of invertible
matrices.

What we will do first, is to find an algorithm that for a given n× n matrix A, computes
an n× n matrix B such that A · B = In if it exists. Hence the outcome of the algorithm
will either be that such a B does not exist, or it will return such a B. Note that according
to Definition 7.18, the inverse of A, here denoted by B, should satisfy A · B = In and
B · A = In. Fortunately, it turns out that A · B = In implies B · A = In, so that the
algorithm we are about to describe indeed will compute the inverse matrix B = A−1,
provided it exists.

Let us denote the i-th column of the identity matrix In by ei for i = 1, . . . , n. So for
example for n = 4, we have

e1 =


1
0
0
0

 , e2 =


0
1
0
0

 , e3 =


0
0
1
0

 , and e4 =


0
0
0
1

 .

The idea of the algorithm to find inverse matrices is the following: we are trying to
find a matrix B ∈ Fn×n such that A · B = In for a given A ∈ Fn×n. Now let us denote
the columns of B as b1, . . . , bn. The i-th column of A · B is by definition of the matrix
product equal to A ·bi, while the i-th column of In is equal to ei. Hence A ·bi = ei for all
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i between 1 and n. Conversely, if A · bi = ei for all i between 1 and n, then the matrices
A · B and In have the same columns, whence A · B = In. Therefore we see that

A · B = In if and only if A · bi = ei for all i between 1 and n.

Therefore, we can find bi, by solving the inhomogeneous system of linear equations
A · x = ei.

From the theory from the previous chapter, we see that to figure out if the system of
equations A · x = ei, it is enough to compute the reduced row echelon form of the
augmented matrix [A|ei]. If ρ(A) = ρ([A|ei]), then according to Corollary 6.27, there
exists a solution and otherwise not. Hence precisely if for all i between 1 and n it holds
that ρ(A) = ρ([A|ei]), we will be able to find a matrix B ∈ Fn×n such that A · B = In.

Now, one could deal with the system of equations A · x = ei for one i at the time and in
that way compute one column of the matrix B at the time, if it exists. However, the first
part of the corresponding augmented matrices is always the same, namely A. Therefore,
it is faster to deal with all n systems at the same time by computing the reduced row
echelon form of the matrix [A|e1|e2| . . . |en] = [A|In].

Hence the algorithm of how to determine if a square matrix A ∈ Fn×n has an inverse,
and if yes how to compute it, is the following:

1. Compute the reduced row echelon form of the n× 2n matrix [A|In]. This can be
done using elementary row operations, just as we did in Section 6.3

2. If the resulting reduced row echelon form is not of the form [In|B], conclude that
A does not have an inverse.

3. If it is of the form [In|B], conclude that A does have an inverse, namely A−1 = B.

To see how this works in practice, let us consider two examples.

Example 7.20

Let F = R and

A =

[
1 2
3 4

]
.

Determine whether or not this matrix has an inverse and if yes, compute it.

Answer: First we determine the reduced row echelon form of the matrix [A|I2]. We obtain:
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[A|I2] =

[
1 2 1 0
3 4 0 1

]
−→

R2 ← R2 − 3 · R1

[
1 2 1 0
0 −2 −3 1

]
−→

R2 ← (−1/2) · R2

[
1 2 1 0
0 1 3/2 −1/2

]
−→

R1 ← R1 − 2 · R2

[
1 0 −2 1
0 1 3/2 −1/2

]
.

Hence we conclude that A has an inverse, namely

A−1 =

[
−2 1
3/2 −1/2

]
.

Example 7.21

Let F = R and

A =

 1 2 3
4 5 6
5 7 9

 .

Determine whether or not this matrix has an inverse and if yes, compute it.

Answer: We start determining the reduced row echelon form of the matrix [A|I3]. We obtain:

[A|I3] =

 1 2 3 1 0 0
4 5 6 0 1 0
5 7 9 0 0 1


−→

R2 ← R2 − 4 · R1

 1 2 3 1 0 0
0 −3 −6 −4 1 0
5 7 9 0 0 1


−→

R3 ← R3 − 5 · R1

 1 2 3 1 0 0
0 −3 −6 −4 1 0
0 −3 −6 −5 0 1


−→

R3 ← R3 − R2

 1 2 3 1 0 0
0 −3 −6 −4 1 0
0 0 0 −1 −1 1

 .

Even though we have not found the reduced row echelon form of [A|I3] yet, we already
found an echelon form of it. The pivots can already be read off and are contained in the first,
second, and fourth columns of the matrix. When proceeding to find the reduced row echelon
form, the first three entries of the third row will remain zero. The reader is encouraged to
compute the reduced echelon form and see that this indeed is true. Hence the reduced row
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echelon form of [A|I3] will not be of the form [I3|B]. We conclude that the matrix A does not
have an inverse.

In principle, we now have an algorithm that can determine if a square matrix has an
inverse and if yes, computes it. However, we have not shown that the algorithm is
correct. In other words, if we follow the steps of the algorithm, will the outcome always
be what it should be? First of all, we should make sure that if the reduced row echelon
form of the n× 2n matrix [A|In] is not of the form [In|B], then A indeed has no inverse.
And second of all, we should make sure that if a matrix B ∈ Fn×n satisfies A · B = In,
then also B ·A = In, so that we indeed can conclude that B is the inverse of A. We will
address these issues in the rest of this section. It turns out that everything is as it should
be and one can show that:

A−1 exists ⇔ the reduced row echelon form of [A|In] is of the form [In|B]
⇔ ρ(A) = n (that is: the rank of A is n). (7-10)

A reader willing to accept this without proof can skip the remainder of this section, but
for the other readers we will give a proof below.

Theorem 7.22

Let A ∈ Fn×n be a square matrix. Then the following statements are logically equiv-
alent:

1. The reduced row echelon form of the n× 2n matrix [A|In] is of the form [In|B]
for some square matrix B ∈ Fn×n.

2. There exists a square matrix B ∈ Fn×n such that A · B = In.

Proof. Let us assume that the reduced row echelon form of the matrix [A|In] is of the
form [In|B] for some square matrix B ∈ Fn×n. Let us denote by bi the i-th column of
the matrix B. Then using the same elementary row operations to transform the matrix
[A|In] into the form [In|B] can be used to transform the matrix [A|ei] into [In|bi]. Since
[In|bi] is in reduced row echelon form, we can conclude that the reduced row echelon
form of the matrix [A|ei] is equal to [In|bi]. This implies that bi is a solution to the system
of linear equations A · x = ei. But then A · B = In. In particular A · B = In for some
square matrix B ∈ Fn×n, namely the matrix occurring in the right part of the reduced
row echelon form of [A|In].



Note 7 7.3 SQUARE MATRICES 173

Now conversely, suppose that A · B = In for some square matrix B ∈ Fn×n. Then
for all i from 1 to n, the system of linear equations A · x = ei has a solution, namely
the i-th column of the matrix B. We claim that the reduced row echelon form of [A|In]
only contains pivots in its first n columns. We will proof this claim using a proof by
contradiction. Assume therefore that the reduced row echelon form of [A|In] in fact
has a pivot contained in a column with index n + i for some i > 0. Then the reduced
row echelon form of the matrix [A|ei] would contain a pivot in its (n + 1)-th column.
In particular, A and [A|ei] would not have the same rank. But then by Corollary 6.27,
the system A · x = ei has no solution. Since we already observed that it does have a
solution, we obtain a contradiction. This proves the claim that the reduced row echelon
form of [A|In] only contains pivots in its first n columns. Next, we claim that the rank
of [A|In] is equal to n. To obtain a contradiction, suppose that the reduced row echelon
form of [A|In] contains a zero row. Considering the second part of the matrix, In, we can
conclude that there exist a sequence of elementary row operations that can transform In
into a matrix for a zero row. But In is a matrix with rank n, while an n× n matrix with
a zero row can have rank at most n− 1. This proves the second claim. Combining the
two claims, we conclude that the reduced row echelon form of [A|In] contains a pivot
in each of its first n columns. But then it is of the form [In|C] for some square matrix
C ∈ Fn×n.

Corollary 7.23

Let A ∈ Fn×n be given. Then there exists B ∈ Fn×n such that A · B = In if and only
if ρ(A) = n.

Proof. If A · B = In for some B ∈ Fn×n, then by Theorem 7.22 the reduced row echelon
form of the n× 2n matrix [A|In] is of the form [In|C] for some C ∈ Fn×n. But then the
reduced row echelon form of A itself is In, implying that ρ(A) = n.

Conversely, if ρ(A) = n, the reduced row echelon form of A is equal to In. But then
the reduced row echelon form of [A|In] is of the form [In|C] for some square matrix
C ∈ Fn×n. By Theorem 7.22, we may conclude that there exists B ∈ Fn×n such that
A · B = In.
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Corollary 7.24

Let A ∈ Fn×n be a square matrix and suppose that there exists a square matrix
B ∈ Fn×n such that A · B = In. Then B ·A = In and therefore B = A−1, the inverse
of A.

Proof. To conclude that B is the inverse of A, we need to show that A · B = B ·A = In.
Since we are given that A · B = In, what is left to show, is that B ·A = In.

Now note that A · (B ·A) = (A · B) ·A = In ·A = A = A · In. Hence A · (B ·A− In) =
A · (B ·A)−A · In = 0, where here 0 denotes the n× n zero matrix.

Note that the previous equation implies that any column of B ·A− In is a solution to the
homogeneous system of equations A · x = 0. On the other hand, the previous corollary
implies that the matrix A has rank n. Hence, we know from Corollary 6.30 that the
system A · x = 0 only has the solution x = 0. Hence all columns of B ·A− In are zero,
implying that B ·A = In. This is exactly what we needed to show.

Corollary 7.25

Let A ∈ Fn×n be given. Then its inverse matrix exists if and only if ρ(A) = n.

Proof. This follows from the previous two corollaries.
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Note 8

Determinants

8.1 Determinant of a square matrix

In this section, we will introduce the determinant of a square matrix. Determinants will
be useful when investigating if a given matrix is invertible, but will also become very
useful in later chapters. We start with a notational convention:

Definition 8.1

Let A = (aij)1≤i≤n,1≤j≤n ∈ Fn×n be a given square matrix. Then we define the matrix
A(i; j) ∈ F(n−1)×(n−1) as:

A(i; j) =



a11 . . . a1 j−1 a1 j+1 . . . a1n
...

...
...

...
ai−1 1 . . . ai−1 j−1 ai−1 j+1 . . . ai−1 n
ai+1 1 . . . ai+1 j−1 ai+1 j+1 . . . ai+1 n

...
...

...
...

an1 . . . an j−1 an j+1 . . . ann


.

In words: the matrix A(i; j) is obtained from A by deleting the i-th row and j-th column
of A. With this in place, we can define the determinant of a square matrix recursively as
follows:
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Definition 8.2

Let A ∈ Fn×n be a square matrix. Then we define

det(A) =

{
A if n = 1,

∑n
i=1(−1)i+1 · ai1 · det(A(i; 1)) if n ≥ 2.

Instead of using the summation symbol, one may also write:

det(A) = a11 · det(A(1; 1))− a21 · det(A(2; 1)) + · · ·+ (−1)n+1 · an1 · det(A(n; 1)).

Example 8.3

Let

A =

[
a11 a12

a21 a22

]
.

To compute the determinant of this matrix, we will use Definition 8.2. First of all, note that
A(1; 1) = a22 and A(2; 1) = a12. Therefore

det
([

a11 a12

a21 a22

])
= a11 · det(a22)− a21 · det(a12) = a11a22 − a21a12. (8-1)

When given the task to compute the determinant of a 2 × 2 matrix, this equation can be
practical.

Example 8.4

As in Example 7.21, let F = R and

A =

 1 2 3
4 5 6
5 7 9

 .

Compute the determinant of A.

Answer: First of all, note that

A(1; 1) =
[

5 6
7 9

]
, A(2; 1) =

[
2 3
7 9

]
, and A(3; 1) =

[
2 3
5 6

]
.
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Hence using Definition 8.2, we obtain that

det(A) = 1 · det
([

5 6
7 9

])
− 4 · det

([
2 3
7 9

])
+ 5 · det

([
2 3
5 6

])
.

Using equation (8-1), we can quickly compute the determinants of 2× 2 matrices. Then we
obtain that

det(A) = 1 · (45− 42)− 4 · (18− 21) + 5 · (12− 15) = 3 + 12− 15 = 0.

Later, we will have a few more techniques at our disposal for computing determinants
of matrices, but for now we consider one particular class of matrices. Given any square
matrix A = (aij)1≤i≤n;1≤j≤n, the entries a11, . . . , ann are called the diagonal entries of A.

Definition 8.5

A matrix A = Fn×n is called a diagonal matrix, if there exist λ1, . . . , λn ∈ F such that

A =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
... . . . . . . . . . ...
0 . . . 0 λn−1 0
0 . . . 0 0 λn

 .

In other words: a diagonal matrix is a square matrix all of whose entries are zeroes,
except possibly on its diagonal. For example, the identity matrix In mentioned in the
beginning of Section 7.3, is a diagonal matrix, with diagonal entries all equal to 1.

Proposition 8.6

Let A = Fn×n be a diagonal matrix with diagonal entries λ1, . . . , λn. Then

det(A) = λ1 · λ2 · · · · · λn.

In particular det(In) = 1.
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Proof. We show this using induction on n. Indeed, if n = 1, then A = λ1 and Definition
8.2 implies that det(A) = λ1. Now assume that n ≥ 2 and that the proposition holds
for diagonal matrices in F(n−1)×(n−1). Using Definition 8.2, we then see that:

det(A) = λ1 · det(A(1; 1))− 0 · det(A(2; 1)) + · · ·+ (−1)n+1 · 0 · det(A(n; 1))
= λ1 · det(A(1; 1))
= λ1 · λ2 · · · · · λn,

where in the last equality we used the induction hypothesis. The induction hypothesis
applies, since A(1; 1) is a diagonal matrix with diagonal entries λ2, . . . , λn. This com-
pletes the induction step. Using the induction principle, we conclude that the proposi-
tion is true. The particular case of the identity matrix now also follows, since then all
diagonal entries are equal to one.

We can in fact at this point already give a formula for the determinant of a larger class
of matrices called upper triangular matrices:

Definition 8.7

A matrix A = Fn×n is called an upper triangular matrix, if there exist λ1, . . . , λn ∈ F

and ai j ∈ F for 1 ≤ i < j ≤ n, such that

A =


λ1 a12 a13 . . . a1n
0 λ2 a23 . . . a2n
... . . . . . . . . . ...
0 . . . 0 λn−1 an−1 n
0 . . . 0 0 λn

 .

In words: an upper triangular matrix has all its nonzero entries above or on its diagonal.
In particular, all entries below the diagonal of an upper triangular matrix are zero.

Theorem 8.8

Let A = Fn×n be an upper triangular matrix with diagonal entries λ1, . . . , λn. Then

det(A) = λ1 · λ2 · · · · · λn.
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Proof. The proof is very similar as the proof of Proposition 8.6 and left to the reader.

Another type of matrices, in the same spirit as upper triangular matrices, is the follow-
ing:

Definition 8.9

A matrix A = Fn×n is called an lower triangular matrix, if there exist λ1, . . . , λn ∈ F

and ai j ∈ F for 1 ≤ j < i ≤ n, such that

A =


λ1 0 0 . . . 0
a2 1 λ2 0 . . . 0

... . . . . . . . . . ...
an−1 1 . . . an−1 n−2 λn−1 0

an 1 . . . an n−2 an n−1 λn

 .

In words: a lower triangular matrix has all its nonzero entries below or on its diagonal.
In particular, all entries above the diagonal of a lower triangular matrix are zero. Also
here, we can find a formula for its determinant. Before showing that, we need a lemma
that can be useful in its own right.

Lemma 8.10

If a square matrix in Fn×n contains a zero row, its determinant is zero.

Proof. This can be shown using induction on n. Providing the details, is left to the
reader.

Theorem 8.11

Let A = Fn×n be a lower triangular matrix with diagonal entries λ1, . . . , λn. Then

det(A) = λ1 · · · · · λn.
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Proof. We show this using induction on n. Indeed, if n = 1, then A = λ1 and Def-
inition 8.2 implies that det(A) = λ1. Now assume that n ≥ 2 and that the propo-
sition holds for lower diagonal matrices in F(n−1)×(n−1). Now note that A(1; 1) is a
lower diagonal matrix with diagonal entries λ2, . . . , λn. Hence the induction hypothe-
sis implies that det(A(1; 1)) = λ2 · · · · · λn. The matrices A(2; 1), . . . , A(n; 1) all have
the zero row as first row. The reason for this is that the first row of A only has a
nonzero entry in its first position, but this position has been removed when construct-
ing the matrices A(2; 1), . . . , A(n; 1). By Lemma 8.10, we therefore have det(A(2; 1)) =
0, . . . , det(A(n; 1)) = 0.

Using Definition 8.2, we then see that:

det(A) = λ1 · det(A(1; 1))− a21 · det(A(2; 1)) + · · ·+ (−1)n+1 · an1 · det(A(n; 1))
= λ1 · det(A(1; 1))− a21 · 0 + · · ·+ (−1)n+1 · an1 · 0
= λ1 · det(A(1; 1))
= λ1 · λ2 · · · · · λn,

where in the last equality we used the induction hypothesis. This completes the induc-
tion step. Using the induction principle, we conclude that the theorem is true.

8.2 Determinants and elementary row operations

Using Definition 8.2 is not always the fastest way to compute the determinant of a
square matrix. When studying systems of linear equations, three types of elementary
row operations could be used to simplify a given system immensely. Motivated by this,
we now study the effect of these three types of elementary row operations on the value
of a determinant. The easiest to deal with is an elementary row operation of the form
Ri ← c · Ri. We start by proving a more general result.
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Theorem 8.12

Consider the following three matrices in Fn×n:

A =



− a1 −
...

− ai−1 −
− ai −
− ai+1 −

...
− an −


, B =



− a1 −
...

− ai−1 −
− bi −
− ai+1 −

...
− an −


, and C =



− a1 −
...

− ai−1 −
− c · ai + bi −
− ai+1 −

...
− an −


,

where c ∈ F. Then det(C) = c · det(A) + det(B).

Proof. We use induction on n. If n = 1, we have A = a for some a ∈ F, B = b for
some b ∈ F and C = c · a + b. Then according to Definition 8.2, we see that det(C) =
c · a + b = c · det(A) + det(B).

Now assume that n ≥ 2 and that the theorem holds for (n− 1)× (n− 1) matrices. We
know from Definition 8.2 that

det(C) =
n

∑
k=1

(−1)k+1 · ck1 · det(C(k; 1)).

Let us denote by ∑n
k=1;k ̸=i(−1)k+1 · ck1 · det(C(k; 1)) the summation one obtains by let-

ting k range from 1 to n, except that now the value i is skipped. Then we can write

det(C) =
n

∑
k=1;k ̸=i

(−1)k+1 · ck1 · det(C(k; 1)) + (−1)i+1 · ci1 · det(C(i; 1)).

For all k different from i, the induction hypothesis implies that det(C(k; 1)) = c ·det(A(k; 1))+
det(B(k; 1)). Further C(i; 1) = A(i; 1) = B(i; 1), since the i-th row is the only row in
which the matrices A, B and C differ. Now using that ci1 = c · ai1 + bi1 and ck1 = ak1 if
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k ̸= i, we see that

det(C) =
n

∑
k=1;k ̸=i

(−1)k+1 · ak1 · det(C(k; 1)) +

(−1)i+1 · (ai1 + bi1) · det(C(i; 1))

=
n

∑
k=1;k ̸=i

(−1)k+1 · ak1 · (c · det(A(k; 1)) + det(B(k; 1)))

+(−1)i+1 · c · ai1 · det(A(i; 1)) + (−1)i+1 · bi1 · det(B(i; 1))

=
n

∑
k=1;k ̸=i

c · (−1)k+1 · ak1 · det(A(k; 1)) + (−1)i+1 · c · ai1 · det(A(i; 1))

+
n

∑
k=1;k ̸=i

(−1)k+1 · bk1 · det(B(k; 1))) + (−1)i+1 · bi1 · det(B(i; 1))

= c · det(A) + det(B).

This concludes the induction step and hence the induction proof.

Corollary 8.13

Let A ∈ Fn×n be given and suppose that C is obtained from A by applying the
elementary row operation Ri ← c · Ri on A, for some i and some c ∈ F. Then
det(C) = c · det(A).

Proof. If we choose bi = 0 in Theorem 8.12, we find that det(C) = c · det(A) + det(B),
where B is a matrix whose i-th row is the zero row. Lemma 8.10, implies that det(B) = 0.
Hence the corollary follows.

Investigating the effect of the remaining two types of elementary row operation turns
out to be more elaborate. What turns out to happen is the following:

Applying Ri ↔ Rj on a square matrix, changes the sign of the determinant. (8-2)

Applying Ri ← Ri + c · Rj on a square matrix, does not affect the determinant. (8-3)
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Example 8.14

As in Example 7.21, let F = R and

A =

 1 2 3
4 5 6
5 7 9

 .

Compute the determinant of A using elementary row operations.

Answer: From Example 7.21 we can read off that:

A =

 1 2 3
4 5 6
5 7 9

 −→
R2 ← R2 − 4 · R1

 1 2 3
0 −3 −6
5 7 9


−→

R3 ← R3 − 5 · R1

 1 2 3
0 −3 −6
0 −3 −6

 −→
R3 ← R3 − R2

 1 2 3
0 −3 −6
0 0 0

 .

Using equation (8-3) three times, we may conclude that

det(A) = det

 1 2 3
0 −3 −6
0 0 0

 .

Now note that the matrix on the right-hand side is an upper triangular matrix. Hence using
Theorem 8.8, we obtain that

det(A) = det

 1 2 3
0 −3 −6
0 0 0

 = 1 · (−3) · 0 = 0.

In the rest of this section, we will prove the validity of equations (8-2) and (8-3). A
reader willing to accept their validity without proof can directly proceed to Section 8.3.
A reader who wants to read the proof of of equations (8-2) and (8-3) is invited to do so,
but on a first reading it may be best to read Section 8.3 first.

We start with two lemmas.
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Lemma 8.15

Assume that n ≥ 2 and let a square matrix A ∈ Fn×n be given. Further, denote by
B ∈ Fn×n a matrix obtained from A by interchanging two consecutive rows of A.
Then det(B) = −det(A).

Proof. We prove this using induction on n.

If n = 2, we have

A =

[
a11 a12
a21 a22

]
and B =

[
a21 a22
a11 a12

]
,

implying det(A) = a11 · a22 − a21 · a12 and det(B) = a21 · a12 − a11 · a22. Hence det(B) =
−det(A).

Now let n ≥ 3 and assume that the lemma holds for n − 1. Let us denote the two
rows of A that are interchanged by Ri and Ri+1. Then, we see that A(i; 1) = B(i + 1; 1)
and A(i + 1; 1) = B(i; 1). Further for k ̸= i and k ̸= i + 1, we have that B(k; 1) can
be obtained from A(k; 1) by interchanging two consecutive rows. Hence for such k,
we have det(B(i; 1)) = −det(A(i; 1)) from the induction hypothesis. Putting all this
together, we find:

det(B) =
n

∑
k=1;k ̸=i;k ̸=i+1

(−1)k+1 · ak 1 · det(B(k; 1))

+(−1)i+1 · ai+1 1 · det(B(i; 1)) + (−1)i+2 · ai 1 · det(B(i + 1; 1))

= −
n

∑
k=1;k ̸=i;k ̸=i+1

(−1)k+1 · ak 1 · det(A(k; 1))

+(−1)i+1 · ai+1 1 · det(A(i + 1; 1)) + (−1)i+2 · ai 1 · det(A(i; 1))

= −
n

∑
k=1

(−1)k+1 · ak 1 · det(A(k; 1))

= −det(A).

This concludes the induction step and hence the proof.

Lemma 8.16

Assume that n ≥ 2 and let a square matrix A ∈ Fn×n be given. Assume that two
consecutive rows of A are identical. Then det(A) = 0.
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Proof. This can be shown following the same strategy as in the proof of Lemma 8.15

The above lemma is just a special case of a more general result:

Proposition 8.17

Assume that n ≥ 2 and let a square matrix A ∈ Fn×n be given. Assume that two
rows of A are identical. Then det(A) = 0.

Proof. If two consecutive rows of A are identical, Lemma 8.16 implies det(A) = 0.
Therefore we are left with the case that two rows of A are identical, but that these are
not consecutive. Now let us denote the two given identical rows of A by Ri and Rj, for
some i > j ≥ 1. We interchange rows Ri and Ri−1, thus moving the row Ri up in the
matrix. The effect on the determinant is a sign change using Lemma 8.15. In the new
matrix, the identical rows are now rows Rj and Ri−1. If these rows are consecutive, we
stop interchanging rows, but otherwise, we move the lowest of the two identical rows
up, one row at the time. Therefore, we end up with a matrix B with two consecutive
rows. Moreover, using Lemma 8.15 each time we interchange to consecutive rows, we
know that det(B) = ±det(A). On the other hand, det(B) = 0 by Lemma 8.16. Hence
we can conclude that det(A) = 0.

We now have all the ingredients needed to show the effect of interchanging two rows
on the determinant of a square matrix.

Theorem 8.18

Let a square matrix A ∈ Fn×n be given and denote by B ∈ Fn×n a matrix obtained
from A using an elementary operation of the form Ri ↔ Rj for some integers i < j.
Then det(B) = −det(A).
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Proof. Let us write

A =



− a1 −
...

− ai−1 −
− ai −
− ai+1 −

...
− aj−1 −
− aj −
− aj+1 −

...
− an −



and C =



− a1 −
...

− ai−1 −
− ai + aj −
− ai+1 −

...
− aj−1 −
− aj + ai −
− aj+1 −

...
− an −



.

Applying Theorem 8.12 on row i of C, we see that

det(C) = det





− a1 −
...

− ai−1 −
− ai −
− ai+1 −

...
− aj−1 −
− aj + ai −
− aj+1 −

...
− an −





+ det





− a1 −
...

− ai−1 −
− aj −
− ai+1 −

...
− aj−1 −
− aj + ai −
− aj+1 −

...
− an −




Now we apply Theorem 8.12 again, but this time for row j in the two determinants
on the right-hand side of this equation and use Proposition 8.17 afterwards. Then we
obtain that

det(C) = det(A) + det(B).

However, Proposition 8.17 implies that det(C) = 0, since rows i and j of C are identical.
Hence 0 = det(A) + det(B), which implies what we wanted to show.

Now that we know the effect of the elementary row operations Ri ← c · Ri and Ri ↔ Rj
on the determinant, let us also see what happens with the determinant when using an
elementary operations of the form Ri ← Ri + c · Rj.
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Theorem 8.19

Let A ∈ Fn×n be given and suppose that the matrix B is obtained from A by applying
the elementary row operation Ri ← Ri + c · Rj on A, for some distinct row indices
i, j, and c ∈ F. Then det(B) = det(A).

Proof. This follows from Theorem 8.12 and Proposition 8.17.

8.3 Alternative descriptions of the determinant

In our description of a determinant of a square matrix A ∈ Fn×n, the first column of
A played a special role. After all, in the recursive definition, we multiply entries from
the first column of A with the determinants of smaller matrices. These smaller matrices
were obtained from A by deleting the first column and some row. For this reason, one
sometimes says that one in Definition 8.2 computes the determinant by expanding it
along the first column. More precisely, one often refers to this as the expansion or Laplace
expansion of the determinant along the first column.

One can now ask if there is any reason why the first column is so special. The answer is:
it is not! It is possible to compute determinants by expansion along other columns and
in fact also by expansion along rows. More precisely, we have the following theorem:

Theorem 8.20

Let n ≥ 2 and A ∈ Fn×n be a square matrix. Then for any j between 1 and n:

det(A) =
n

∑
i=1

(−1)i+j · ai j · det(A(i; j)). (8-4)

Moreover, for any i between 1 and n:

det(A) =
n

∑
j=1

(−1)i+j · ai j · det(A(i; j)). (8-5)
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Proof. We will not prove this theorem, but the interested reader can find some remarks
at the end of this section explaining the main ideas behind the proof.

Note that for j = 1, equation (8-4) simply becomes the formula given for the determi-
nant given in Definition 8.2. Equation (8-4) describes the Laplace expansion of the de-
terminant along the j-th column, while equation (8-5) describes the Laplace expansion
of the determinant along the i-th row. These equations can also be expressed without
using the summation sign in the following way:

det(A) = (−1)1+j · a1j · det(A(1; j)) + (−1)2+j · a2j · det(A(2; j))+

· · ·+ (−1)n+j · anj · det(A(n; j)).

and

det(A) = (−1)i+1 · ai1 · det(A(i; 1)) + (−1)i+2 · ai2 · det(A(i; 2))+

· · ·+ (−1)i+n · ain · det(A(i; n)).

Example 8.21

As in Example 7.21, let F = R and

A =

 1 2 3
4 5 6
5 7 9

 .

Compute the determinant of A using Laplace expansion along the first row.

Answer: First of all, note that

A(1; 1) =
[

5 6
7 9

]
, A(1; 2) =

[
4 6
5 9

]
, and A(1; 3) =

[
4 5
5 7

]
.

Hence using Laplace expansion along the first row, we obtain that

det(A) = (−1)1+1 · 1 · det
([

5 6
7 9

])
+ (−1)1+2 · 2 · det

([
4 6
5 9

])
+

(−1)1+3 · 3 · det
([

4 5
5 7

])
.

Using equation (8-1), we can quickly compute the determinants of 2× 2 matrices. Then we
obtain that

det(A) = 1 · (45− 42)− 2 · (36− 30) + 3 · (28− 25) = 3− 12 + 9 = 0.
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Theorem 8.20 has a nice consequence involving transpose matrices.

Corollary 8.22

Let A ∈ Fn×n be given. Then det(A) = det(AT).

Proof. We use induction on n. If n = 1, A = AT, so certainly det(A) = det(AT). Now
assume n ≥ 2 and that the corollary holds for n− 1. Note that A(j; 1)T = AT(1; j), so
that using the induction hypothesis, we may use that det(AT(1; j)) = det(A(j; 1)T) =
det(A(j; 1)). Now using Laplace expansion of the determinant of AT along the first row,
we see that

det(AT) =
n

∑
j=1

(−1)1+j · (AT)1 j · det(AT(1; j))

=
n

∑
j=1

(−1)1+j · aj 1 · det(A(j; 1))

= det(A),

where in the last equality, we used Definition 8.2. This concludes the induction step and
thereby the proof.

Finally, one very important property of determinants that we want to mention here, is
that determinants behave well with respect to matrix multiplication:

Theorem 8.23

Let A, B ∈ Fn×n be given. Then det(A · B) = det(A) · det(B).

The interested reader can find a sketch of the proof at the end of this section, but this is
not required reading. This theorem looks innocent, but has a number of consequences
that all are quite important for us later on. We formulate them as a number of corollaries.

Corollary 8.24

Let A ∈ Fn×n be given. Then A has an inverse if and only if det(A) ̸= 0.
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Proof. If A has an inverse A−1, then A ·A−1 = In. Applying Theorem 8.23, we see that
det(A) ·det(A−1) = det(In) = 1. For the last equality we used Proposition 8.6. But then
det(A) ̸= 0, since otherwise the product det(A) · det(A−1) would be zero.

Conversely, assume that det(A) ̸= 0. If we transform A using any sequence of elemen-
tary row operations to a matrix B in reduced row echelon form, then Corollary 8.13 and
Theorems 8.18, 8.19 imply that det(B) = d · det(A) for some nonzero constant d ∈ F.
Therefore det(B) ̸= 0. This means in particular that B does not contain a zero row, since
otherwise its determinant would be zero by Lemma 8.10. But then B = In, implying
that A has rank n. As observed in equation (7-10) and Corollary 7.25, this implies that
A has an inverse.

Corollary 8.25

Let A ∈ Fn×n be given. Then the columns of A are linearly independent if and only
if det(A) ̸= 0.

Proof. This follows by combining Theorem 7.8, the previous corollary, and Corollary
7.25.

Corollary 8.26

Let A ∈ Fn×n be given. Then det(A) ̸= 0 if and only if the homogeneous system of
linear equations with coefficient matrix A only has the zero vector as solution.

Proof. This follows by combining Corollaries 6.30, 7.25, and 8.24.

We will not prove Theorem 8.23 in detail, but the reader who would like to know more,
can read the remainder of this section and get a good impression on why this theorem
as well as Theorem 8.20 is true. The remainder of this section can be skipped on a first
reading. If a reader is willing to accept the statements of Theorems 8.20 and 8.23 without
proof, feel free to continue to the next chapter.

The key to understanding why Theorem 8.20 is true is the following:
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Lemma 8.27

Let f : Fn×n → F be a function that satisfies the following two conditions:

1. f (A) = 0 for all square matrices A ∈ Fn×n that have two identical rows.

2. For all matrices A, B and C as given in Theorem 8.12, it holds that f (C) =
c · f (A) + f (B).

Then f (A) = det(A) · f (In) for all A ∈ Fn×n.

Proof. We only sketch the proof: the two conditions that f satisfies, are enough to de-
duce exactly how the value of f changes, when a matrix A is changed using an elemen-
tary row operation. In fact, many of the proofs in Section 8.2 can be reused. The two
given conditions are also enough to deduce that f (A) = 0 for all A that have a zero
row. The outcome is then that f behaves exactly the same as the determinant under
elementary row operations and that both f and the determinant take the value zero for
matrices with a zero row.

Given any square matrix A and a sequence of elementary row operations that transform
A into its reduced row echelon form, say B, one can then compare the values of f and
the determinant under these elementary row operations. The outcome is that f (A) =
d · f (B) for some constant d ∈ F, but also det(A) = d · det(B) for the same constant
d. If A has rank strictly less than n, its reduced row echelon form B contains a zero
row. But then f (B) = 0 and det(B) = 0. If A has rank n, then B = In. Hence in this
case f (A) = d · f (In), while det(A) = d · det(In) = d · 1 = d. In all cases, we see that
f (A) = det(A) · f (In).

Note that the determinant as we defined it in Definition 8.2 satisfies the two conditions
from Lemma 8.27, see Proposition 8.17 and Theorem 8.12. To prove that Theorem 8.20
is valid, what one needs to do is to show that the function f one obtains by expanding a
determinant along some row or some column, always has the properties mentioned in
Lemma 8.27 and that f (In) = 1. To a high extent, this can be done similarly to how we
showed these things for the determinant defined in Definition 8.2.

Finally, let us give a sketch of the proof of Theorem 8.23:

Proof. To give a proof sketch of Theorem 8.23, we consider the function f : Fn×n → F

defined by f (A) = det(A · B) for some arbitrarily chosen B ∈ Fn×n. Using Proposition
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8.17 and Theorem 8.12, one first shows that f satisfies the conditions in Lemma 8.27.
One can then conclude that f (A) = det(A) · f (In) for all A ∈ Fn×n. But then det(A ·
B) = f (A) = det(A) · f (In) = det(A) · det(B). In the last equality, we used that In ·B =
B.
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Note 9

Vector spaces

9.1 Definition and examples of vector spaces

In the previous chapters, we have worked with linear combinations of vectors from Fn,
where F is a field (typically F = R or F = C). We have seen that elements of Fn can
be added and multiplied with scalars, that is to say, multiplied with elements from F.
It turns out to be a great advantage to take a more abstract point of view and describe
several essential properties right from the start. One says that one gives these properties
as axioms. This is similar in spirit to what we did when we defined a field. Also there,
several properties of the real and complex numbers were put as axioms for such a field.
In case of vectors and scalars, the result is the following:
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Definition 9.1

A vector space over a field F is a set V of elements called vectors, together with two op-
erations satisfying eight axioms. The first operation is called addition and denoted
by +. It takes as input two elements u, v ∈ V and returns a vector in V denoted by
u+ v. The second operation is called scalar multiplication and denoted by ·. It takes
as input an element of c ∈ F, in this context often called a scalar, and a vector u ∈ V
and returns a vector in V denoted by c · u. The eight axioms that should be satisfied
are:

1. u + (v + w) = (u + v) + w for all u, v, w ∈ V

2. u + v = v + u for all u, v ∈ V

3. There exists a vector 0 ∈ V called the zero vector, such that u + 0 = u for all
u ∈ V

4. For any u ∈ V there exists an element −u ∈ V called the additive inverse of u,
such that u + (−u) = 0

5. c · (d · u) = (c · d) · u for all u ∈ V and all c, d ∈ F

6. 1 · u = u for all u ∈ V

7. c · (u + v) = c · u + c · v for all u, v ∈ V and all c ∈ F

8. (c + d) · u = c · u + d · u for all u ∈ V and all c, d ∈ F

Note that in item 5 in the formula (c · d) · u, the first · (in c · d) denotes multiplication in
the field F, while the second · denotes the scalar multiplication on the vector space V.
Similarly in item 8, in the formula (c + d) · u = c · u + d · u, the first + denotes addition
in F, while the second + denotes addition in V.
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Example 9.2

Let us take V = Fn together with the addition and scalar product we have defined before in
equations (7-1) and (7-2). This gives an example of a vector space. To verify this, one should
check if the eight vector space axioms from Definition 9.1 are satisfied. Note that five of them
were mentioned already in Theorem 7.2. The zero vector in the third axiom is simply the zero
vector in Fn, while the additive inverse of a vector required in axiom four is given as:

−

 v1
...

vn

 =

 −v1
...
−vn


This only leaves the sixth axiom, but

1 ·

 v1
...

vn

 =

 1 · v1
...

1 · vn

 =

 v1
...

vn

 for all

 v1
...

vn

 ∈ Fn.

We see that Fn is a vector space over the field F.

A vector space over the field R is often called a real vector space. Similarly, a vector space
over the field C is often called a complex vector space. We have in the previous chapters
actually encountered examples of vector spaces already. Let us give a few.

Example 9.3

Consider the set C of complex numbers. If we take F = C and n = 1 in Example 9.2, we
obtain that we can see C as a vector space over itself. However, we can also see C as a vector
space over the real numbers R. Indeed, as +, we simply take addition of complex numbers.
Since we can multiply any two complex numbers, we can certainly multiply a real number
with a complex number. This gives us the needed scalar product. That all eight axioms from
Definition 9.1 are satisfied, can be deduced from Theorems 3.10 and 3.11.

Example 9.4

Very similarly as in Example 9.3, one can view the set of real numbers R as a vector space
over itself, but also as a vector space over the field of rational numbers Q (see Examples 2.4
and 6.2 for a description of the field Q).
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Example 9.5

Consider the set Fm×n of m× n matrices with entries in a field F. Using addition of matrices
as defined in Definition 7.14 and scalar multiplication defined by:

c ·

 a11 · · · a1n
...

...
am1 · · · amn

 =

 c · a11 · · · c · a1n
...

...
c · am1 · · · c · amn

 ,

the first two items of Theorem 7.15 state that the first two vector field axioms are satisfied.
The m× n matrix having zero entries only, plays the role of zero vector. All other axioms can
be checked as well, but we leave this to the reader.

Example 9.6

Consider the set C[Z] of polynomials in the variable Z with coefficients in C as defined in
Definition 4.1. On this set, we have as addition +, the usual addition of polynomials. Also,
we can multiply any two polynomials, so we certainly can multiply a constant polynomial
with another polynomial. This gives us a scalar product on C[Z]. We will not do so here, but
one can show that all eight axioms from Definition 9.1 are satisfied. Hence C[Z] is a vector
space over C.

Example 9.7

Consider the set F of all functions with domain R and codomain R. If f : R → R and r ∈ R

are given, one can define the function r · f : R→ R as (r · f )(a) = r · f (a) for all a ∈ R. This
gives a scalar multiplication on F. Addition on F is defined in a similar way: if f : R → R

and g : R→ R are given, the function ( f + g) : R→ R is defined as ( f + g)(a) = f (a) + g(a)
for all a ∈ R. One can verify that this gives F the structure of a vector space over R. As zero
vector, one takes the zero function: 0 : R→ R, satisfying a 7→ 0 for all a ∈ R.

In all examples we have given above, it holds that the product of the scalar 0 with any
vector is equal to the zero vector 0. However, none of the eight vector space axioms state
that 0 · u = 0 for all u ∈ V. Fortunately, the eight vector space axioms are chosen well:
one can deduce quite a lot from them, for example that the formula 0 · u = 0 indeed is
true for any vector space. We prove this and another intuitive formula in the following
lemma:
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Lemma 9.8

Let V be a vector space. Then

0 · u = 0 for all u ∈ V (9-1)

and
(−1) · u = −u for all u ∈ V. (9-2)

Proof. Using that 0 = 0+ 0 and vector space axiom eight, we see that 0 ·u = (0+ 0) ·u =
0 · u + 0 · u. Adding −(0 · u) on both sides and using vector space axioms four, one and
three, we get

0 = 0 · u + (−(0 · u))
= (0 · u + 0 · u) + (−(0 · u))
= 0 · u + (0 · u + (−(0 · u)))
= 0 · u + 0
= 0 · u.

This shows the first part. The second part follows similarly. Since 0 = (1 + (−1)), we
obtain that 0 · u = (1 + (−1)) · u = 1 · u + (−1) · u. The left-hand side of this equation
is equal to 0 by the first part of this lemma. Using this and vector space axiom six, we
see that 0 = u + (−1) · u. Hence (−1) · u = −u.

9.2 Basis of a vector space

Very similar to what we did in Section 7.1 for vectors in Fm, one can talk about a linear
combination of vectors in the setting of general vector spaces. Explicitly, given a vector
space V over a field F, vectors v1, . . . , vn ∈ V and scalars c1, . . . , cn ∈ F, an expression
of the form

c1 · v1 + · · ·+ cn · vn

is called a linear combination of the vectors v1, . . . , vn. Likewise, the notion of linear
(in)dependency of a finite sequence of vectors from Definition 7.4 generalizes directly
to the setting of vector spaces:
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Definition 9.9

Let V be a vector space over a field F. A sequence of vectors v1, . . . , vn ∈ V is
called linearly independent if and only if the equation c1 · v1 + · · · cn · vn = 0 with
c1, . . . , cn ∈ F only holds if c1 = · · · = cn = 0.
If the sequence of vectors v1, . . . , vn ∈ V is not linearly independent, one says that it
is linearly dependent.

Basically, the only difference with Definition 7.4 is that Fm has been replaced with V.
Also in the setting of general vector spaces, it is common to simply say that the vectors
v1, . . . , vn are linearly (in)dependent rather than saying that the sequence of vectors
v1, . . . , vn is linearly (in)dependent.

There is one complication concerning linear independence of vectors in general vector
spaces. In Definition 9.9, we only consider finitely many vectors. It turns out that some-
times, we would like to be able to state that the vectors from a possibly infinite set are
linearly independent. The following definition will allow us to do that:

Definition 9.10

Let V be a vector space over a field F. The vectors in a set S of vectors are called
linearly independent if and only if any finite sequence of distinct vectors v1, . . . , vn
from S is a linearly independent sequence of vectors.
If the vectors in S are not linearly independent, one says that they are linearly depen-
dent.

Basically, in Definition 9.10, the number of vectors in the set S we consider may be in-
finite, but when determining if they are linearly independent, we only consider finitely
many at the same time. Often we will work with finite sequences of vectors only, in
which case Definition 9.9 can be used.

In Examples 7.5 and 7.6 we have already given examples of linearly dependent and lin-
early independent vectors in the vector space R2. Let us consider some more examples.
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Example 9.11

In Example 9.3, we considered C as a vector space over R. In this example, we give examples
of linearly dependent and independent vectors. First of all, consider the elements 1 and i. To
determine if these are linearly independent, we consider the equation c1 · 1+ c2 · i = 0, where
c1, c2 ∈ R. The reason we only allow c1 and c2 to be real numbers, is that we in this example
consider C as a vector space over the field R. Hence in Definition 9.9, we have V = C and
F = R. In particular, the scalars only come from R by definition.

Returning to the equation c1 · 1+ c2 · i = 0, where c1, c2 ∈ R, we see that the complex number
c1 · 1 + c2 · i is in rectangular form. Since two complex numbers are equal if and only if they
have the same real and imaginary part, the equation c1 · 1 + c2 · i = 0 implies that c1 = 0 and
c2 = 0. We conclude that the complex numbers 1 and i are linearly independent over R.

Similarly, one can show that the complex numbers 2 and 1 + i are linearly independent. In-
deed, suppose that c1 · 2+ c2 · (1+ i) = 0, for some c1, c2 ∈ R. Considering real and imaginary
part, we see that this implies that 2c1 + c2 = 0 and c2 = 0, whence c1 = c2 = 0.

As a final example, let us consider a sequence of three complex numbers, for example 2, 1+ i
and 2 + 3i. Since −(1/2) · 2 + 3 · (1 + i) + (−1) · (2 + 3i) = 0, we see that the three complex
numbers 2, 1 + i, and 2 + 3i are linearly dependent over R.

Example 9.12

In Example 9.5, we viewed the set of matrices Fm×n as a vector space over F. For any pair
(i, j) satisfying 1 ≤ i ≤ m and 1 ≤ j ≤ n, define the matrix E(i,j) ∈ Fm×n to be the matrix
having zero entries, except for the entry (i, j), which is equal to one. For m = n = 2, we have
for example

E(1,1) =

[
1 0
0 0

]
, E(1,2) =

[
0 1
0 0

]
, E(2,1) =

[
0 0
1 0

]
, and E(2,2) =

[
0 0
0 1

]
.

Continuing with m = n = 2, we see that the matrices E(1,1), E(1,2), E(2,1), E(2,2) are linearly
independent over F. Indeed for any c1, c2, c3, c4 ∈ F, one has

c1 · E(1,1) + c2 · E(1,2) + c3 · E(2,1) + c4 · E(2,2) =

[
c1 c2

c3 c4

]
.

Hence c1 · E(1,1) + c2 · E(1,2) + c3 · E(2,1) + c4 · E(2,2) = 0 implies that c1 = c2 = c3 = c4 = 0.

For general m and n one can show similarly that the m× n matrices E(1,1), . . . , E(m,n) are lin-
early independent over F.
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Returning to m = n = 2, an example of a sequence of linearly dependent matrices is:[
−1 0
2 4

]
,
[

1 1
1 1

]
, and

[
5 4
2 0

]
,

since

1 ·
[
−1 0
2 4

]
− 4 ·

[
1 1
1 1

]
+

[
5 4
2 0

]
=

[
0 0
0 0

]
.

Example 9.13

Consider the complex vector space C[Z] from Example 9.6. Recall that two polynomials
p1(Z) = a0 + a1Z + · · ·+ anZn of degree n and p2(Z) = b0 + b1Z + · · ·+ bmZm of degree m
are equal if and only if n = m and ai = bi for all i. This implies in particular, that a polynomial
p(Z) = c0 + c1Z + · · ·+ cnZn is equal to the zero polynomial if and only if ci = 0 for all i.
This shows that the set {1, Z, Z2, . . . } is a set of linearly independent polynomials over C.

All these examples show that the notion of linear independence carries over well to the
setting of general vector spaces. With this in place, we come to a very important notion
in the theory of vector spaces.

Definition 9.14

Let V be a vector space over a field F. A set S of vectors is called a basis of V if the
two following conditions are met:

1. The vectors in S are linearly independent.

2. Any v ∈ V can be written as a linear combination of vectors in S.

An ordered basis (v1, v2, . . . ) is a list of vectors, such that the set {v1, v2, . . . } is a basis
of V.

It turns out that any vector space has a basis and we will freely use this fact. A reader
who has time and motivation for a bit of extra material about this is referred to Section
9.4, but this is not required reading. If a vector space has a finite basis, i.e., if the set
S containing the basis vectors, is finite, we can enumerate the elements in S and write
S = {v1, . . . , vn}. Then (v1, . . . , vn) is a finite ordered basis of V. Hence any vector space
with a finite basis has an ordered basis.
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Before giving examples, let us give one lemma and one more definition.

Lemma 9.15

Let V be a vector space over a field F that has a finite ordered basis (v1, . . . , vn).
Then any vector v ∈ V can be written in exactly one way as a linear combination of
the basis vectors.

Proof. The second part of Definition 9.14 guarantees that any vector v ∈ V can be
written as a linear combination of the basis vectors, say v = c1 · v1 + · · · cn · vn for
certain c1, . . . , cn ∈ F. What we need to show, is that this is the only way to write
v as a linear combination of the basis vectors v1, . . . , vn. Suppose therefore that v =
d1 · v1 + · · · dn · vn for certain d1, . . . , dn ∈ F. We wish to show that c1 = d1, . . . , cn = dn.
First of all, we have

c1 · v1 + · · · cn · vn = v = d1 · v1 + · · · dn · vn.

Therefore,
c1 · v1 + · · · cn · vn − (d1 · v1 + · · · dn · vn) = 0,

which in turn implies that

(c1 − d1) · v1 + · · · (cn − dn) · vn = 0.

However, since the vectors v1, . . . , vn are linearly independent (this follows from the
first part of Definition 9.14), we see that c1 − d1 = 0, . . . , cn − dn = 0. But then c1 =
d1, . . . , cn = dn, which is what we wanted to show.

This Lemma 9.15 motivates the following definition:
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Definition 9.16

Let V be a vector space over a field F that has a finite ordered basis β = (v1, . . . , vn).
If for v ∈ V, we have

v = c1 · v1 + · · · cn · vn,

then we define

[v]β =

 c1
...

cn

 ∈ Fn

to be the coordinate vector of v with respect to the ordered basis β. One also says that
[v]β is the β-coordinate vector of v.

The function sending a vector of V to its β-coordinate vector, has several nice properties.
Two of them will be useful later on.

Lemma 9.17

Let V be a vector space over a field F that has a finite ordered basis β. Then we have:

[u + v]β = [u]β + [v]β for all u, v ∈ V

and
[c · v]β = c · [v]β for all c ∈ F and v ∈ V.

Proof. We prove the first item only and leave the proof of the second one to the reader.
Let us say that the ordered basis β is given by v1, . . . , vn. If u = c1 · v1 + · · · cn · vn and
v = d1 · v1 + · · · dn · vn, then u + v = (c1 + d1) · v1 + · · · (cn + dn) · vn. Hence

[u + v]β =

 c1 + d1
...

cn + dn

 =

 c1
...

cn

+

 d1
...

dn

 = [u]β + [v]β.

Now we will use this lemma to prove a theorem involving linear independence of vec-
tors.
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Theorem 9.18

Let V be a vector space over a field F that has a finite ordered basis β consisting of n
vectors. Suppose we are given u1, . . . , uℓ ∈ V and c1, . . . , cℓ ∈ F. Then

c1 · u1 + · · ·+ cℓ · uℓ = 0 if and only if c1 · [u1]β + · · ·+ cℓ[·uℓ]β = 0.

In particular, the vectors u1, . . . , uℓ in V are linearly independent if and only if the
vectors [u1]β, . . . , [uℓ]β in Fn are linearly independent.

Proof. A vector v in V is the zero vector if and only if its β-coordinate vector is the zero
vector. Hence c1 · u1 + · · ·+ cℓ · uℓ = 0 if and only if [c1 · u1 + · · ·+ cℓ · uℓ]β = 0. Using
Lemma 9.17 repeatedly, we can also deduce that [c1 · u1 + · · ·+ cℓ · uℓ]β = c1 · [u1]β +
· · · + cℓ · [uℓ]β. Hence the first part of the theorem follows. The second part follows
directly from the first part.

This theorem basically reduces the question of linear (in)dependence of vectors in V to
a question of linear (in)dependence of vectors in Fn. However, for Fn, we already have
techniques at our disposal, notably Theorem 7.8.

Example 9.19

Let F = R and V = R2. We claim that the vectors

e1 =

[
1
0

]
and e2 =

[
0
1

]
form an ordered basis β for R2. Indeed, these vectors are linearly independent (the reader is
encouraged to check this), and any vector is a linear combination of e1 and e2, since[

v1

v2

]
= v1 ·

[
1
0

]
+ v2 ·

[
0
1

]
.

This means that in this case [v]β = v.

Now let γ be the sequence of vectors

u =

[
1
2

]
and v =

[
2
1

]
∈ R2.

We have seen in Example 7.6 that these two vectors are linearly independent. Further, one
can show that any vector in R2 can be written as a linear combination of u and v. Indeed,
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given v1, v2 ∈ R, the equation

c1 ·
[

1
2

]
+ c2 ·

[
2
1

]
=

[
v1

v2

]
,

gives rise to a system of two linear equations in the variables c1, c2. Solving this system, one
can show that for any v1, v2 ∈ R, we have

c1 = −v1

3
+

2v2

3
and c2 =

2v1

3
− v2

3

so that [
v1

v2

]
=

(
−v1

3
+

2v2

3

)
·
[

1
2

]
+

(
2v1

3
− v2

3

)
·
[

2
1

]
.

This means that γ = (u, v) is an ordered basis of R2. Moreover, from the above we see that[
v1

v2

]
γ

=

[
−v1/3 + 2v2/3
2v1/3− v2/3

]
.

This first part of Example 9.19 can be expanded further: as in Section 7.3, let us denote
the i-th column of the identity matrix In ∈ Fn×n by ei for i = 1, . . . , n. In other words:
the vector ei has 1 as its i-th coordinate and zeroes everywhere else. These vectors form
an ordered basis (e1, . . . , en) of the vector space Fn called the standard (ordered) basis. For
the sake of completeness, let us show that they form an ordered basis:

Proposition 9.20

The vectors e1, e2, . . . , en form an ordered basis of the vector space Fn over F.

Proof. According to Definition 9.14, we need to check two things:

1. The vectors e1, e2, . . . , en are linearly independent.

2. Any vector in Fn can be written as a linear combination of e1, e2, . . . , en.

The first item follows from the observation that

c1 · e1 + c2 · e2 + · · ·+ cn · en =

 c1
...

cn

 .
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Indeed, this equation implies that if a linear combination is equal to the zero vector in
Fn, then all scalars c1, . . . , cn are zero. The second item follows, since if v = (v1, . . . , vn) ∈
Fn is given, then

v =

 v1
...

vn

 = v1 · e1 + v2 · e2 + · · ·+ vn · en.

Similarly as in Example 9.19, if β is the standard ordered basis of Fn, then [v]β = v for
all v ∈ Fn. Note though that just as in Example 9.19, the vector space Fn has many more
possible ordered bases. Now let us continue with giving examples of bases of vector
spaces.

Example 9.21

Continuing Examples 9.3 and 9.11, we know that the complex numbers 1 and i are linearly
independent over R. They form an ordered basis (1, i), which we denote by β, since any
complex number is a linear combination of 1 and i over the real numbers. More specifically,
for any a, b ∈ R, we have a + bi = a · 1 + b · i. Therefore, for a, b ∈ R, we have

[a + bi]β =

[
a
b

]
∈ R2.

Hence [a + bi]β is equal to the rectangular coordinates of the complex number a + bi.

There are many more possible bases (and hence ordered bases) for C when viewed as vector
space over R. For example, (2, 1 + i) is a possible ordered basis. Indeed, we have already
seen in Example 9.11 that the complex numbers 2 and 1 + i are linearly independent over
R. Also any complex number can be written as a linear combination with coefficients in R

of 2 and 1 + i. To see this, we need to check that for a given complex number a + bi, where
a, b ∈ R, the equation a + bi = c1 · 2 + c2 · (1 + i) has a solution c1, c2 ∈ R. Considering real
and imaginary parts, we see that a = 2c1 + c2 and b = c2. Hence we have as solution c2 = b
and c1 = (a− c2)/2 = (a− b)/2. Denoting the ordered basis (2, 1 + i) by γ, we have

[a + bi]γ =

[
(a− b)/2

b

]
∈ R2.
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Example 9.22

Continuing Examples 9.5 and 9.12, we can find an ordered basis β of the vector space Fm×n

over F. This ordered basis is (E(1,1), . . . , E(m,n)). We have already seen that the matrices
E(1,1), . . . , E(m,n) are linearly independent, while any matrix A = (aij)1≤i≤m;1≤j≤n can be writ-
ten as a linear combination of them, namely A = ∑m

i=1 ∑n
j=1 aijE(i,j).

Specifically for m = n = 2, the matrices E(1,1), E(1,2), E(2,1), E(2,2) form an ordered basis β =

(E(1,1), E(1,2), E(2,1), E(2,2)) and we have

[
a11 a12

a21 a22

]
β

=


a11

a12

a21

a22

 .

Example 9.23

In this example, we again consider the complex vector space C[Z] from Examples 9.6 and
9.13. From these examples, we already know that the set {1, Z, Z2, . . . } is a set of linearly
independent polynomials over C. However, by definition of polynomials, any polynomial
is a linear combination over C of finitely many elements from this set. Therefore the set
{1, Z, Z2, . . . } is in fact a basis of the complex vector space C[Z]. This is an example of a
vector space having an infinite basis.

It turns out that for a given vector space V over a field F, the number of vectors in a
basis of V is always the same. Later in this section, we will prove this in the special case
where the number of vectors in a basis is finite. In general, the number of elements in
a basis of V is called the dimension of the vector space V. A common notation for the
dimension of a vector space V is: dim(V) or just dim V. If one wants to make clear over
which field F the vector space is defined, one writes dimF(V) or dimF V. If the number
of vectors in a basis is finite, one says that V has finite dimension, otherwise one says
that V has infinite dimension, which can also be expressed in a formula as: dim V = ∞.

Example 9.24

Let us compute the dimensions of various examples of vector spaces that we have encoun-
tered so far. First of all from Example 9.19, we see that dimR(R

2) = 2. Much more generally
one has dimF(F

n) = n, since a possible basis of Fn is formed by the n vectors e1, . . . , en.
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A special case of the above is when C is viewed as a vector space over itself. Then it has di-
mension one: dimC(C) = 1 (a possible basis is formed by the complex number 1). However,
if C is viewed as a vector space over R, a basis is given by {1, i} as we have seen in Example
9.21. Hence dimR(C) = 2.

The vector space of m× n matrices Fm×n has a basis consisting of the mn matrices E(i,j) with
1 ≤ i ≤ m and 1 ≤ j ≤ n, as we have seen in Example 9.22. Hence dimF(F

m×n) = mn.

We have seen in Example 9.13 that the complex vector space C[Z] has a basis with infinitely
many elements, namely {1, Z, Z2, . . . }. Hence dimC(C[Z]) = ∞.

Theorem 9.25

If V has a finite basis consisting of n vectors, any other set of linearly independent
vectors in V has at most n elements.

Proof. Let us denote the basis vectors by v1, . . . , vn and denote the resulting ordered
basis by β. We will prove the theorem by contradiction. Assume therefore that there
exists a set of at least n + 1 linearly independent vectors, say w1, . . . , wn+1. Since β is an
ordered basis, we can find scalars aij ∈ F such that

wj = a1jv1 + · · ·+ anjvn for j = 1, . . . , n + 1.

Now let A = (aij) ∈ Fn×(n+1) be the matrix with entries aij. Note that the j-th col-
umn in A is equal to [wj]β. Since A has n rows, its rank ρ(A) is at most n. Since A
has n + 1 columns, this implies that ρ(A) < n + 1. Then by Corollary 6.30, we see
that the homogeneous system with coefficient matrix A has nonzero solutions. Let
(c1, . . . , cn+1) ∈ Fn+1 be such a nonzero solution. Then we have

c1 ·

 a11
...

an1

+ · · ·+ cn+1 ·

 a1 n+1
...

an n+1

 = A ·

 c1
...

cn+1

 =

 0
...
0

 .

Now recall that the j-th column in A is equal to [wj]β. This means that we have c1 ·
[w1]β + cn+1 · [wn+1]β = 0. Since from Lemma 9.17 one can deduce that [c1 ·w1 + · · ·+
cn+1 ·wn+1]β = c1 · [w1]β + cn+1 · [wn+1]β, we may conclude that [c1 ·w1 + · · ·+ cn+1 ·
wn+1]β = 0. Hence c1 ·w1 + · · ·+ cn+1 ·wn+1 = 0. Since (c1, . . . , cn+1) was not the zero
vector, we conclude that the vectors w1, . . . , wn+1 are not linearly independent after all.
This contradiction shows that the assumption that there exists sets with at least n + 1
linearly independent vectors was wrong. Hence the theorem is true.
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Corollary 9.26

If V has a finite basis consisting of n vectors, any other basis for V contains precisely
n vectors as well.

Proof. Let S be a basis of V consisting of n vectors and T any other basis. Since the
vectors T are linearly independent, Theorem 9.25 implies that the number of vectors in
T is at most n. Let us denote by m, the number of vectors in T. What we have just shown
is that m ≤ n. Now applying Theorem 9.25 again, but now taking T as a basis, we can
conclude that the number of elements in S is at most m, that is: n ≤ m. Combining the
inequalities m ≤ n and n ≤ m, we conclude that n = m, which is what we wanted to
show.

This corollary justifies the definition of dimension of a vector space V as the number of
basis vectors in the finite dimensional case: no matter which basis of V you pick, it will
contain precisely the same number of vectors. As mentioned before, the basis vectors
themselves typically will be different when comparing two possible bases. In fact, for
finite dimensional vector spaces, we can characterize all possible bases:

Theorem 9.27

Let V be a vector space over a field F of dimension n. Then any set of n linearly
independent vectors in V is a basis for V.

Proof. Let us denote the vectors in some basis of V as v1, . . . , vn and let us write β for the
corresponding ordered basis. Further, let w1, . . . , wn be n linearly independent vectors
in V. To show that these form a basis, all we need to check is item 2 in Definition 9.14.
That is to say, we need to show that any v ∈ V can be written as a linear combination of
w1, . . . , wn. First of all, since β is a basis, we can find aij ∈ F such that

wj = a1j · v1 + · · ·+ anj · vn for j = 1, . . . , n,

or equivalently using the summation symbol:

wj =
n

∑
i=1

aij · vi for j = 1, . . . , n. (9-3)
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Now let A = (aij) ∈ Fn×n be the matrix with entries aij. As in the proof of Theorem 9.25,
note that the j-th column in A is equal to [wj]β. We claim that these columns are linearly
independent vectors in Fn. To see why, suppose that c1 · [w1]β + cn · [wn]β = 0 for
certain c1, . . . , cn ∈ F. Then [c1 ·w1 + · · ·+ cn ·wn]β = 0, implying that c1 ·w1 + · · ·+
cn ·wn = 0. Using that the vectors w1, . . . , wn are linearly independent, we conclude
that c1 = 0, . . . , cn = 0, which is what we wanted to show to prove our claim. Now
using Theorem 7.8 and Corollary 7.25, we conclude that the matrix A has an inverse
matrix A−1.

Now let us return to what we want to show: v ∈ V can be written as a linear combi-
nation of w1, . . . , wn. Since v is a linear combination of the basis vectors v1, . . . , vn, it
is enough to show that each of the basis vectors themselves can be written as a linear
combination of w1, . . . , wn. Let us write A−1 = (cij)1≤i≤n;1≤j≤n. We claim that:

vj = c1j ·w1 + ·+ cnj ·wn for j = 1, . . . , n.

Equivalently, using the summation symbol, we claim that:

vj =
n

∑
k=1

ckj ·wk for k = 1, . . . , n.

To show the claim, first we use equation (9-3) to see that:

n

∑
k=1

ckj ·wk =
n

∑
k=1

ckj ·
(

n

∑
i=1

aik · vi

)

=
n

∑
k=1

n

∑
i=1

ckj · aik · vi

=
n

∑
k=1

n

∑
i=1

aik · ckj · vi

=
n

∑
i=1

n

∑
k=1

aik · ckj · vi

=
n

∑
i=1

(
n

∑
k=1

aik · ckj

)
· vi.

Now note that the expression ∑n
k=1 aik · ckj is the (i, j)-th entry of the matrix product

A ·A−1. However, since A ·A−1 = In, we see that ∑n
k=1 aik · ckj = 1 if i = j and ∑n

k=1 aik ·
ckj = 0 otherwise. Hence we can conclude that ∑n

k=1 ckj ·wk = vj, which is exactly what
we wanted to show.
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9.3 Subspaces of a vector space

Given a vector space V over some field F, it can happen that a subset W of V is closed
under the scalar multiplication and the vector addition as defined on V. The word
“closed” is just a way of saying that if v ∈ W and c ∈ F, then c · v ∈ W and if u, v ∈ W,
then u + v ∈ W. Since V is a vector space, we always have c · v ∈ V and u + v ∈ V, but
if W is closed under the scalar multiplication and addition, the vectors c · v and u + v
end up in W again. Let us consider two examples of this:

Example 9.28

Let us consider the complex vector space C2 and consider the subset W = {(z, 2 · z) | z ∈ C}.
Then adding two elements of W yields another element of W, since (z, 2 · z)+ (w, 2 ·w) = (z+
w, 2 · (z + w)) for all z, w ∈ C. Also multiplying an element from W with a scalar c ∈ C yields
an element of W, since c · (z, 2 · z) = (c · z, 2 · (c · z)). In fact W is a vector space using this
scalar multiplication and addition. For example, one has (0, 0) ∈ W, since (0, 0) = (0, 2 · 0).
Also −(z, 2 · z) = ((−z), 2 · (−z)) for any z ∈ C, which shows that if v ∈ W, then also
−v ∈ W. The reader is encouraged to check the remaining axioms of a vector space. Note
that dimC(W) = 1 (a possible basis is given by {(1, 2)}).

Example 9.29

Consider the vector space R2×2 of 2 by 2 matrices with coefficients in R. As we have seen,
this is a real vector space of dimension four. Now let D be the subset of R2×2 consisting of all
diagonal matrices, that is:

D =

{[
λ1 0
0 λ2

]}
.

Then the set D is closed under scalar multiplication and matrix addition. What this means is
that if A, B ∈ D and c ∈ F, then c ·A ∈ D and A+B ∈ D. Let us check this. If A has diagonal
elements λ1 and λ2 and B has diagonal elements µ1 and µ2, then:

c ·A = c ·
[

λ1 0
0 λ2

]
=

[
c · λ1 0

0 c · λ2

]
∈ D,

and

A + B =

[
λ1 0
0 λ2

]
+

[
µ1 0
0 µ2

]
=

[
λ1 + µ1 0

0 λ2 + µ2

]
∈ D

One can check that D is in fact a real vector space of dimension two: a possible ordered basis
is (E(1,1), E(2,2)).
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To capture these type of examples, we have the following:

Definition 9.30

Let V be a vector space over a field F. A subspace of V is a subset W of V that is a
vector space over F under the scalar multiplication and vector addition defined on
V.

In other words, if W ⊆ V is closed under the scalar multiplication and vector addition
that V has, W “inherits” these operations. If W with these operations satisfies all vector
space axioms from Definition 9.1, it is called a subspace of W. Any vector space V has
at least two subspace: V itself can be seen as a subspace, and also the subspace {0}
containing only the zero vector of V. In general, V has many more subspaces. In all
cases, however, one can say the following about the dimension of a subspace:

Lemma 9.31

Let V be a vector space over a field F of dimension n and W a subspace of V. Then
dim W ≤ n.

Proof. Since V has a basis with n vectors, and W has a basis with dim W vectors. The
basis vectors of W form a sequence of dim W linearly independent vectors. Hence The-
orem 9.25 implies that dim W ≤ n.

Since V already satisfies all vector space axioms, it turns out not to be necessary to
check them all when investigating if a subset W is a subspace. More precisely, we have
the following lemma:

Lemma 9.32

Let V be a vector space over F and W a nonempty subset of V. Then W is a subspace
of V if the following is satisfied:

for all u, v ∈W and all c ∈ F it holds that u + c · v ∈W. (9-4)
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Proof. First let us show that W is closed under the scalar multiplication and vector ad-
dition of V. First of all, since W is not empty, it contains at least one vector, say w.
Then choosing u = w and v = w in equation (9-4), we can conclude that the vector
w + (−1) ·w is also in W. Using for example equation (9-2), this implies that 0 ∈ W.
Now that we know this, we can apply equation (9-4) again, but now with u = 0 and
v ∈ W chosen arbitrarily. We can hence conclude that for arbitrary v ∈ W, also c · v is
in W. This shows that W is closed under scalar multiplication. Applying equation (9-4)
for arbitrary u, v ∈ W and c = 1, we conclude that u + v is in W. Hence W is closed
under vector addition.

Now let us show that W is a vector space by considering the eight vector space axioms
from Definition 9.1. Items 1, 2, 5, 6, 7, and 8 actually hold for all vectors in V and
therefore certainly for all vectors in a subset of V. Therefore, all that remains to be
checked is that items 3 and 4 are satisfied. Item 3 is fulfilled, since we already have
shown that equation (9-4) implies that 0 ∈W. As for item 4, if v ∈W, then (−1) · v ∈W,
since W is closed under scalar multiplication. But by equation (9-2), (−1) · v = −v, so
that indeed the additive inverse −v is in W, for all v in W.

Example 9.33

Using Lemma 9.32, it is not hard to show that the subsets W and D from Examples 9.28 and
9.29 are subspaces. The reader is encouraged to check that the condition in equation (9-4) is
satisfied for these examples.

Example 9.34

Let C∞ be the set of all infinitely differentiable functions f : R → R. It is out of scope of
these notes to define very precisely what an infinitely differentiable function is, but roughly
speaking this means the following: if for all x ∈ R the limit lima→0( f (x + a) − f (x))/a
exists, we can define the derivative of f , denoted by f ′, to be the function f ′ : R → R with
x 7→ lima→0( f (x + a) − f (x))/a. An infinitely differentiable function f : R → R has the
property that one can keep on differentiating it as often as one wants. In particular, not only
its derivative f ′ exists, but also the derivative of f ′ (denoted by f ′′ or f (2)), the derivative of
f ′′ (denoted by f ′′′ or f (3)), and so on. More generally for any positive integer n, one denotes
with f (n) the n-th derivative of f . More precisely, one recursively defines the n-th derivative
as follows:

f (n) =

{
f if n = 0,

( f (n−1))′ if n > 0.

The set C∞ is a subspace of the vector space F from Example 9.7. This amounts to showing
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that if f , g ∈ C∞ and c ∈ R, then also f + c · g ∈ C∞. In fact one can show inductively that
( f + c · g)(n) = f (n) + c · g(n) for any n ∈ Z≥0. In particular, f + c · g is infinitely differentiable,
which is what we needed to show.

There is one specific way to construct a subspace, which we will get in to now.

Definition 9.35

Let V be a vector space over F and S a set of vectors from V. Then the span of S,
denotes by Span(S) is the set of all possible linear combinations of vectors from S.
In particular, if S = {v1, . . . , vn}, then

Span(S) = {c1 · v1 + · · · cn · vn | c1, . . . , cn ∈ F}.

It is customary to define Span(∅) = {0}. As a consequence one also says that the empty
set ∅ is a basis for the vector space {0}. One can verify that for any subset S ⊆ V, the
set Span(S) is in fact a subspace of V, using for example Lemma 9.32. If W is a given
subspace of a vector space V and W = Span(S), one says that the vectors in S span W.
One also says in this situation that W is spanned by the vectors in S. The vectors in a
basis of W will certainly span W, but in general a set of vectors spanning W need not be
linearly independent.

Example 9.36

Consider the real vector space V = R3 and let

v1 =

 1
2
3

 , v2 =

 4
5
6

 , and v3 =

 0
3
6

 .

Question: Find a basis of the subspace W spanned by the three vectors v1, v2, v3.

Answer:

A first, but unfortunately wrong, guess could be that the three vectors v1, v2 and v3 them-
selves form a basis. Certainly any vector in W can be written as a linear combination of v1, v2

and v3. This is a direct consequence of the Definition 9.35 of the span. However, in order to
be a basis, the three vectors v1, v2, v3 would have to be linearly independent as well. It turns
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out they are not. Using Theorem 7.8 this can be determined by calculating the reduced row
echelon form of the 3× 3 matrix A with columns v1, v2 and v3. We omit the details of this
calculation, but instead encourage the reader to verify that this reduced row echelon form is: 1 0 4

0 1 −1
0 0 0

 .

This shows that the three vectors v1, v2 and v3 are linearly dependent, but at the same time
that the first two of them are linearly independent (compare to Example 7.9, where a similar
approach was used for three vectors in C3). We can conclude that v3 can be expressed as a
linear combination of v1 and v2. This in turns implies that the two vectors v1 and v2 span
exactly the same subspace of R3 as the three vectors v1, v2 and v3. Hence {v1, v2} is a basis
of W.

We have already fully answered the question, but suppose that we would like to see explicitly
how to express v3 as a linear combination of v1 and v2. To do this, we need to find a solution to
the homogeneous system of linear equations with coefficient matrix A of the form (c1, c2, 1).
Looking at the reduced row echelon form of A, we see that (−4, 1, 1) is such a solution. Hence
(−4) · v1 + 1 · v2 + v3 = 0, which implies that v3 = 4 · v1 − v2.

As we saw in the previous example, saying that a subspace is spanned by certain vec-
tors, does not mean that these vectors are linearly independent. The procedure we used
in Example 9.36 to find a basis can be generalized. Let us do that in the following theo-
rem:

Theorem 9.37

Let a subspace W of the vector space Fn be spanned by vectors u1, . . . , uℓ. Further
suppose that the reduced row echelon form of the matrix with columns u1, . . . , uℓ

has pivots precisely in columns j1, . . . , jρ. Then {uj1 , . . . , ujρ} is a basis of W.

Proof. First of all, let us denote by A the matrix with columns u1, . . . , uℓ and by B the
reduced row echelon form of A. By definition of the reduced row echelon form of a ma-
trix, the columns of B with column indices i1, . . . , iρ are the first ρ standard basis vectors
e1, . . . , eρ. In particular, they are linearly independent. We claim that this implies that
the columns of B with column indices i1, . . . , iρ are also linearly independent. Indeed,
if cj1 · uj1 + · · · + cjρ · ujρ = 0, then the tuple (v1, . . . , vℓ) ∈ Fℓ defined by vj = cj if
j ∈ {j1, . . . , jρ} and vj = 0 otherwise, is a solution to the homogeneous system of linear
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equations with coefficient matrix A. However, we know that any such solution is also
a solution to the homogeneous system with coefficient matrix B. Since we already ob-
served that the columns of B with column indices i1, . . . , iρ are linearly independent, we
conclude that necessarily cj1 = 0, . . . , cjρ = 0. This shows that the vectors {uj1 , . . . , ujρ}
are linearly independent.

Now choose any column uj of A, where j ̸∈ {j1, . . . , jρ}. Again by definition of the
reduced row echelon form, the j-th column of B has zeroes for its last n − ρ entries.
Hence it can be expressed as a linear combination of e1, . . . , eρ, which are just columns
j1, . . . , jℓ of B. This means that the homogeneous system with coefficient matrix B has a
solution (v1, . . . , vℓ) such that vj = 1 and vk = 0 for all k ̸∈ {j, j1, . . . , jρ}. Now using that
this is also a solution to the homogeneous system of linear equations with coefficient
matrix A, we find that the j-th column of A can be expressed as a linear combination
of columns j1, . . . , jρ. This proves that the span of u1, . . . , uℓ is the same as the span of
{uj1 , . . . , ujρ}.

Combining all the above, we conclude that {uj1 , . . . , ujρ} is a basis of W.

Looking back at Theorem 6.29, we see that in that theorem the solution set to a homo-
geneous system of linear equations was described exactly as the span of n− ρ vectors.
In this case these vectors actually form a basis of the solution set and in particular they
are linearly independent. Let us show this now.

Corollary 9.38

Let a homogeneous system of m linear equation in n variables over a field F be
given. Denote the coefficient matrix of this system by A and assume that this matrix
has rank ρ. The n − ρ vectors v1, . . . , vn−ρ indicated in Theorem 6.29 form a basis
of the solution set to the homogeneous system of linear equations with coefficient
matrix A.

Proof. Proof sketch: we use that same notation for the vectors ci and the matrix Â as
in Theorem 6.29. Looking back at the way the vector vi was defined in Theorem 6.29,
one can see that vi has a 1 in the coordinate j, where j satisfies that ci is the j-th column
in Â. Similarly, one sees that vi has coefficients equal to 0 afterwards, since ci contains
zeroes only after its ith coefficient. Hence the matrix with columns v1, . . . , vn−ρ is in row
echelon form. This implies that the corresponding matrix in reduced row echelon form
has pivots in each column. Theorem 9.37 then implies that {v1, . . . , vn−ρ} is a basis.
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Corollary 9.39

Let V be a vector space over a field F of finite dimension n with ordered basis β and
let u1, . . . , uℓ be vectors in V. Further suppose that the reduced row echelon form
of the matrix with columns [u1]β, . . . , [uℓ]β has pivots precisely in columns j1, . . . , jρ.
Then a basis of Span(u1, . . . , uℓ) is given by {uj1 , . . . , ujρ}.

Proof. We give a sketch of the proof: first of all, we see from Theorem 9.37 that a basis
of the subspace of Fn generated by [u1]β, . . . , [uℓ]β is given by {[uj1 ]β, . . . , [ujρ ]β}. Now
Theorem 9.18 can be used to see that {uj1 , . . . , ujρ} is a basis of Span(u1, . . . , uℓ).

9.4 Extra: why does any vector space have a basis?

This section is not required reading and can be skipped. It is meant as extra material for
a student who has the time and motivation for it.

In the previous sections, we have simply used the fact that any vector space V has a
basis. To prove this, we need to study the set I(V) consisting of all subsets of V whose
elements are linearly independent vectors. For example ∅ ∈ I(V), since the empty set
contains no vectors and therefore cannot contain linearly dependent vectors. If V ̸= {0}
any subset of the form {v} is in I(V) as long as v ̸= 0. Intuitively, a basis B of V should
be a set containing as many linearly independent vectors as possible. More precisely,
this intuition would say that B ∈ I(V) and that no set of linearly independent vectors
can contain B as a strict subset. This second intuitive property can be reformulated by
saying that if C ∈ I(V) and B ⊆ C, then B = C. Such a B is called a maximal element
of I(V).

The above discussion is purely to get an intuitive idea, but the following theorem shows
that there is merit in that discussion.

Theorem 9.40

Let B be a maximal element of I(V). Then B is a basis of V.

Proof. By definition of I(V), the vectors in B are linearly independent. What needs
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to be shown is that any vector in V can be written as a linear combination of vectors
in B. Suppose that this is not the case. Then there exists v ∈ V such that any linear
combination of vectors in B is distinct from v. We claim that in this case, the set B ∪ {v}
consists of linearly independent vectors. To show this, suppose that

c0 · v + c1 · v1 + · · ·+ cn · vn = 0, (9-5)

for some c0, c1, . . . , cn ∈ F and v1, . . . , vn ∈ B. If c0 = 0, we immediately see that c1 =
0, . . . , cn = 0, since the vectors in B are linearly independent. However, c0 cannot be
nonzero, since if it were, equation (9-5) would imply that v = −c−1

0 · c1 · v1− · · · − c−1
0 ·

cn · vn, contrary to the assumption that v cannot be written as a linear combination of
vectors from B. Hence indeed, the set B ∪ {v} consists of linearly independent vectors,
just as claimed. Another way of saying this is that B∪{v} ∈ I(V), which in turn implies
that B was not a maximal element of I(V), contrary to the assumption that it was.
The contradiction shows that any vector in V can be written as a linear combination of
vectors from B. Hence B is a basis.

This theorem implies that in order to show that any vector space V has a basis, it is
enough to show that the set I(V) always contains a maximal element. This is a direct
consequence of a famous lemma called Zorn’s lemma. Formulating and proving Zorn’s
lemma needs tools from foundational mathematics though that are out of scope of these
notes.
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Note 10

Linear maps between vector spaces

Given two vector spaces V1 and V2, both over the same field F, a linear map is a function
from V1 to V2 that is compatible with scalar multiplication and vector addition. More
precisely, we have the following:

Definition 10.1

Let V1 and V2 be vector spaces over a field F. Then a linear map from V1 to V2 is a
function L : V1 → V2 such that:

1. L(u + v) = L(u) + L(v) for all u, v ∈ V1,

2. L(c · u) = c · L(u) for all c ∈ F and u ∈ V1.

A linear map is also called a linear transformation. Note that in the formula L(u + v) =
L(u) + L(v), the + in u + v denotes vector addition in V1, while the + in L(u) + L(v)
denotes vector addition in V2. Similarly, in the formula L(c · u) = c · L(u), the · in c · u
denotes the scalar multiplication in V1, while in c · L(u), it denotes the scalar multipli-
cation in V2.

While in the previous chapter, we studied one vector space at the time, linear maps
connect different vector spaces with each other. Linear maps respect the vector space
structure: choosing the scalar c equal to 0 and using equation (9-1), one obtains for
example

L(0) = 0, (10-1)
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where the 0 on the left-hand side of the equation denotes the zero vector in V1 and the
one on the right denotes the zero vector in V2. Similarly, choosing c = −1 and using
equation (9-2), one obtains that

L(−u) = −L(u). (10-2)

Of course, there are many possible functions between two vector spaces and in general
not many will be linear. Let us consider some examples.

Example 10.2

Consider the following function from R to R. Which ones are linear maps?

1. f : R→ R defined by x 7→ x2,

2. g : R→ R defined by x 7→ 2x + 1,

3. h : R→ R defined by x 7→ 2x.

Answer:

1. f : R→ R defined by x 7→ x2. This is not a linear map. We have for example f (1+ 1) =
f (2) = 4, but if f would have been a linear map, we should have had f (1 + 1) =

f (1) + f (1) = 1 + 1 = 2.

2. g : R → R defined by x 7→ 2x + 1. This is not a linear map either, even though the
graph of this function is a line. We have g(0) = 1, but if g would have been a linear
map, we should have had g(0) = 0 by equation 10-1.

3. h : R → R defined by x 7→ 2x. This is a linear map. For all x, y ∈ R we have
h(x + y) = 2(x + y) = 2x + 2y = h(x) + h(y) and for all c ∈ R and x ∈ R, we have
c · h(x) = c2x = 2cx = h(c · x).

More general, linear maps from R to R are precisely those functions whose graph is a
straight line passing through the origin. In other words, they are functions L : R → R

such that x 7→ a · x for some constant a ∈ R. The reason is that if L : R → R is a linear
map, then for all x ∈ R, we have L(x) = L(x · 1) = x · L(1). In the last equality, we used
property 2 from Definition 10.1. Setting a = L(1), we indeed obtain that L(x) = a · x for
all x ∈ R.
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We will see that there is a strong connection between linear maps and matrices. For this
reason, we start with studying linear maps coming from matrices and afterwards return
to studying linear maps in a more general setting.

10.1 Linear maps using matrices

Let us start by defining a large class of linear maps.

Definition 10.3

Let F be a field. Given a matrix A ∈ Fm×n, define the function LA : Fn → Fm by
defining LA(v) = A · v for all v ∈ Fn.

It turns out that all functions LA : Fn → Fm defined above are linear.

Lemma 10.4

The function LA : Fn → Fm in Definition 10.3 is a linear map.

Proof. We need to check the two conditions from Definition 10.1. First of all

LA(u + v) = A · (u + v)
= A · u + A · v
= LA(u) + LA(v), for all u, v ∈ Fn.

Secondly:

LA(c · u) = A · (c · u) = c · (A · u) = c · LA(u) for all c ∈ F and u ∈ Fn.

In Example 10.2, we saw that the function h : R → R, x 7→ 2x was a linear map. It
is actually a very special case of Definition 10.3: if we choose n = m = 1, F = R and
A = [2] in Definition 10.3, we find the function h. Instead of A = [2], we could also just
have written A = 2. Indeed, when writing down a 1× 1 matrix, it is quite common to
leave the brackets [ ] out.
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Example 10.5

Let F = R and choose

A =

[
1 1 1 1
1 2 3 4

]
∈ R2×4.

Then the corresponding linear map LA : R4 → R2 works as follows:

LA




v1

v2

v3

v4


 =

[
1 1 1 1
1 2 3 4

]
·


v1

v2

v3

v4

 =

[
v1 + v2 + v3 + v4

v1 + 2v2 + 3v3 + 4v4

]
.

So for example

LA



−1
1
0
0


 =

[
0
1

]
, LA




0
2
−1
1


 =

[
2
5

]
and LA




1
−1
−1
1


 =

[
0
0

]
.

As Example 10.5, it is possible that a linear map LA maps a vector to the zero vector.
The set of such vectors has a special name:

Definition 10.6

Let F be a field. Given a matrix A ∈ Fm×n, the kernel of the matrix A, denoted by
ker A, is the following set of vectors:

ker A = {v ∈ Fn | A · v = 0} .

Note that one can equivalently define the kernel of a matrix A to be all vectors from
Fn that are mapped to the zero vector by the linear map LA. We can also think of the
vectors in the kernel as precisely those vectors that are solutions to the homogeneous
system of linear equations with coefficient matrix A.
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Remark 10.7

A remark about terminology is in place here. Some authors prefer to use the words
null space, right kernel or right null space for what we have called the kernel of a matrix.
The reason for adding the word “right” is that we have multiplied the matrix with a
column vector from the right. One could also have considered the set of row vectors
u ∈ F1×m such that u ·A = 0. This set is called the left kernel of A or sometimes also
the left null space.

One of the reasons that we introduced the notion of kernel of a matrix, is that it actually
is a subspace. Let us show this in the following lemma.

Lemma 10.8

Let F be a field and A ∈ Fm×n a matrix. Then the kernel of A is a subspace of Fn.

Proof. First of all, note that 0 ∈ ker A so that ker A is not the empty set. This means that
if we set W = ker A, then the requirement that W is not empty in Lemma 9.32 is met.

Let u, v ∈ ker A and c ∈ F. Then

A · (u + c · v) = A · u + A · (c · v) = A · u + c · (A · v) = 0 + c · 0 = 0. (10-3)

Here we used that A · u = 0 and A · v = 0, since u, v ∈ ker A. Equation (10-3) implies
that u + c · v ∈ ker A. Then Lemma 9.32 implies that ker A is a subspace of Fn.

The dimension of ker A is called the nullity of the matrix A. It is denoted by nullA.

Example 10.9

Let F = R and consider the matrix

A =

[
1 1 1 1
1 2 3 4

]
.

Compute a basis for ker A and compute the nullity of A.
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Answer: The kernel of A consists of all vectors v = (v1, v2, v3, v4) ∈ R4 such that A · v = 0.
We have for example seen in Example 10.5 that the vector (1,−1,−1, 1) is mapped to (0, 0)
by the linear map LA. Therefore (1,−1,−1, 1) ∈ ker A.

We can think of the vectors in the kernel as precisely those vectors that are solutions to the
homogeneous system of two linear equations with coefficient matrix A. To describe all these
solutions, we follow the same procedure as explained in Example 6.28 and Theorem 6.29.
Hence, we first bring the matrix A in reduced row echelon form:[

1 1 1 1
1 2 3 4

]
−→

R2 ← R2 − R1

[
1 1 1 1
0 1 2 3

]
−→

R1 ← R1 − R2

[
1 0 −1 −2
0 1 2 3

]
.

Now we can see that v = (v1, v2, v3, v4) ∈ ker A if and only if v1 − v3 − 2v4 = 0 and v2 +

2v3 + 3v4 = 0. Similarly as in Example 6.28 (or directly using Theorem 6.29), we see that

ker A =

t1 ·


1
−2
1
0

+ t2 ·


2
−3
0
1

 | t1, t2 ∈ R

 .

Hence the vectors 
1
−2
1
0

 and


2
−3
0
1


span ker A. In fact, Corollary 9.38 tells us that these two vectors form a basis of ker A. Hence
a basis for ker A is given by 


1
−2
1
0

 ,


2
−3
0
1


 .

The nullity of the matrix A is by definition the dimension of the subspace ker A. Since we
have just computed a basis of ker A and this basis consists of two vectors, we conclude that
the nullity of A is two. In other words: nullA = 2.

We have already observed that we can think of the vectors in the kernel as precisely
those vectors that are solutions to the homogeneous system of linear equations with
coefficient matrix A. Using Corollary 9.38, we obtain the following result, which often
is called the rank-nullity theorem for matrices.
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Theorem 10.10

Let F be a field and A ∈ Fm×n a matrix. Then

ρ(A) + null(A) = n,

where ρ(A) denotes the rank of the matrix A and null(A) its nullity.

Proof. Using Corollary 9.38, we see that the kernel of A has a basis containing precisely
n − ρ(A) many vectors. Hence null(A) = dim ker(A) = n − ρ(A). This implies that
ρ(A) + null(A) = n.

We have seen in Lemma 10.8, that the kernel of a matrix A ∈ Fm×n is a linear subspace
of Fn. In other words: ker A is a linear subspace of the domain of the linear map LA :
Fn → Fm. To a matrix A ∈ Fm×n one can also associate a linear subspace of Fm, the
codomain of the linear map LA : Fn → Fm. We do this in the following definition.

Definition 10.11

Let F be a field. Given a matrix A ∈ Fm×n, the column space of the matrix A, denoted
by colspA, is the subspace of Fm spanned by the columns of A. The dimension of
the column space of a matrix A is called the column rank of A.

Lemma 10.12

Let F be a field and A ∈ Fm×n a matrix. Then colspA, the column space of the matrix
A is precisely the image of the linear map LA : Fn → Fm.

Proof. An element from the column space of a matrix A is by definition a linear combi-
nation of the columns of A. On the other hand, an element of the image of the linear
map LA : Fn → Fm is of the form A · v for some vector v = (v1, . . . , vn) ∈ Fn. Using
Definition 7.10, we can rewrite this as the linear combination of the columns of A as
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follows:

A · v =

 a11 . . . a1n
...

...
am1 . . . amn

 ·
 v1

...
vn

 = v1 ·

 a11
...

am1

+ · · · vn ·

 a1n
...

amn

 .

Hence the image of the linear map LA consists precisely of all linear combinations of the
columns of A. But this is precisely the column space of the matrix A.

Remark 10.13

Because of Lemma 10.12, the column space of a matrix A is sometimes also called
the range or the image of A.

We have previously introduced the rank of a matrix in Definition 6.22. The rank ρ(A) of
a matrix A as defined in Definition 6.22 is sometimes more properly called the row rank
of the matrix A, since one can show that the dimension of the vector space spanned by
the rows of A is equal to ρ(A). It turns out however, that for any matrix, its row rank
and column rank are the same. Therefore, we will from now on simply call the column
rank of a matrix A, the rank of the matrix and denote it by ρ(A), using the same notation
as in Definition 6.22.

It is not obvious from Definitions 6.22 and 10.11 that row rank and column rank of a
matrix are always the same. A reader willing to accept this can skip the remainder of
this section, but for the interested reader, we give a short proof of why row rank and
column rank are always the same.

Theorem 10.14

Let F be a field and A ∈ Fm×n a matrix. Then the row rank and the column rank of
the matrix A are the same.

Proof. The row rank ρ(A) of a matrix A is by definition equal to the number of pivots in
the reduced row echelon form of A. On the other hand, Theorem 9.37 implies that the
number of vectors in a basis of the column space of A is also equal to this number of
pivots. Hence the dimension of the column space of A is also equal to ρ(A).
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10.2 Linear maps between general vector spaces

In the previous section, we have focused on linear maps coming from matrices, but
Definition 10.1 allows for much more general linear maps. It turns out that the notions
of kernel and image also make sense in the general setting. Let us first consider some
more examples.

Example 10.15

Let F = C and consider the complex vector space C[Z] (see Example 9.6). Recall that C[Z]
denotes the set of all polynomials with coefficients in C. Now consider the map D : C[Z] →
C[Z] defined by D(a0 + a1Z + a2Z2 + · · · + anZn) = a1 + 2a2Z + · · · + nanZn−1. In words,
the map D sends a polynomial p(Z) to its derivative p(Z)′. One can show that D is a linear
map.

Example 10.16

Let V1 = Fn×n and V2 = F. Given a square matrix A ∈ Fn×n, the trace, denoted by Tr(A), is
defined as the sum of the elements on its diagonal. In other words:

Tr


 a11 . . . a1n

...
...

an1 . . . ann


 = a11 + · · ·+ ann.

Question: Is the map Tr : Fn×n → F, defined by A 7→ Tr(A) a linear map?

Answer: To find out whether or not the trace map Tr : Fn×n → F as defined above, is linear,
we check if all conditions in Definition 10.1 are satisfied. First of all, using the notation from
Definition 10.1, we have V1 = Fn×n and V2 = F. We should first check that these are vector
spaces over a field F. Both are indeed vector spaces over F: For V1, see Example 9.5 with
m = n and for V2, see Example 9.2 with n = 1.

Now we need to check if Tr satisfies the two conditions from Definition 10.1. Let us choose
arbitrary c ∈ F and u, v ∈ Fn×n. Hence we can write

u =

 a11 . . . a1n
...

...
an1 . . . ann

 and v =

 b11 . . . b1n
...

...
bn1 . . . bnn

 .
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Then

u + v =

 a11 . . . a1n
...

...
an1 . . . ann

+

 b11 . . . b1n
...

...
bn1 . . . bnn

 =

 a11 + b11 . . . a1n + b1n
...

...
an1 + bn1 . . . ann + bnn


and

c · u = c ·

 a11 . . . a1n
...

...
an1 . . . ann

 =

 c · a11 . . . c · a1n
...

...
c · an1 . . . c · ann

 .

Hence

Tr(u + v) = a11 + b11 + · · · ann + bnn = a11 + · · · ann + b11 + · · · bnn = Tr(u) + Tr(v)

and
Tr(c · u) = c · a11 + · · · c · ann = c · (a11 + · · · ann) = c · Tr(u).

We can conclude that Tr : Fn×n → F, defined by A 7→ Tr(A) is a linear map.

Example 10.17

Let F = R and consider the map m5 : R2 → R2 defined by m5(v1, v2) = (5v1, 5v2). In
other words, the effect of map m5 on a vector is that it multiplies a vector with the scalar 5.
Visually, this means that the direction of a vector is not changed, but its length becomes five
times longer. One can show that this is a linear map of real vector spaces.

More generally, one can show that if F is a field and c ∈ F is a scalar, then the map mc : Fn →
Fn defined by mc(u) = c · u is a linear map of vector spaces.

Example 10.18

For α ∈ R, consider the map Rα : R2 → R2 defined by Rα(v1, v2) = (cos(α) · v1 − sin(α) ·
v2, sin(α) · v1 + cos(α) · v2). Geometrically, the effect of Rα on (v1, v2) ∈ R2 is a rotation over
an angle α against the clock, where the rotation has center in (0, 0). For example, if α = π/2,
then Rπ/2(v1, v2) = (−v2, v1). One can show that Rα is a linear map.

Example 10.19

We choose F = C. Let V1 be the set of polynomials in C[Z] of degree at most three and
similarly let V2 be the set of polynomials in C[Z] of degree at most four. Both V1 and V2 are
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vector spaces over C. A possible basis for V1 is given by the set {1, Z, Z2, Z3}, while a basis for
V2 is {1, Z, Z2, Z3, Z4}. Hence dim V1 = 4 and dim V2 = 5. Now define the map L : V1 → V2

by p(Z) 7→ (i + 2Z) · p(Z). Note that indeed for any p(Z) ∈ V1, we have (i + 2Z) · p(Z) ∈ V2

using equation (4-1). One can show that L is a linear map. Indeed, if p1(Z), p2(Z) ∈ V1 and
c ∈ C one has

L(p1(Z) + p2(Z)) = (i + 2Z) · (p1(Z) + p2(Z))

= (i + 2Z) · p1(Z) + (i + 2Z) · p2(Z)

= L(p1(Z)) + L(p2(Z))

and
L(c · p1(Z)) = (i + 2Z) · c · p1(Z) = c · (i + 2Z) · p1(Z) = c · L(p1(Z)).

Example 10.20

As a final example of a linear map, we consider the map ev : C[Z] → C2 defined by p(Z) 7→
(p(0), p(1)). So for example L(Z2 + Z + 1) = (02 + 0 + 1, 12 + 1 + 1) = (1, 3). One can show
that ev is a linear map.

We finish this section with some general properties of linear maps. First we consider
the composition of two linear maps, see Section 2.2 for the definition of the composite
of two functions.

Theorem 10.21

Let F be a field and V1, V2, V3 vector spaces over F. Further, suppose that L1 : V1 →
V2 and L2 : V2 → V3 are linear maps. Then the composition L2 ◦ L1 : V1 → V3 is also
a linear map.

Proof. Let us choose arbitrary u, v ∈ V1 and c ∈ F. Then using linearity of L1 and L2 as
well as the definition of the composition of two functions, we obtain that

(L2 ◦ L1)(u + v) = L2(L1(u + v))
= L2(L1(u) + L1(v))
= L2(L1(u)) + L2(L1(v))
= (L2 ◦ L1)(u) + (L2 ◦ L1)(v).
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and

(L2 ◦ L1)(c · u) = L2(L1(c · u)) = L2(c · L1(u)) = c · L2(L1(u)) = c · (L2 ◦ L1)(u).

Hence by Definition 10.1, the map L2 ◦ L1 : V1 → V3 is a linear map.

Since any function f : A→ B has an image, namely the set image( f ) = { f (a) | a ∈ A},
see Section 2.2, a linear map L : V1 → V2 has an image as well. In view of Lemma 10.12,
this generalizes the idea of the notion of the column space of a matrix to the setting of
general linear maps. One can show that the image of a linear map L : V1 → V2 is a
subspace of V2. The notion of a kernel can also directly be generalized.

Definition 10.22

Let F be a field and V1 and V2 vector spaces over F. Given a linear map L : V1 → V2,
the kernel of the map L is:

ker L = {v ∈ V1 | L(v) = 0} .

Similarly as in the case of the kernel of a matrix, one can show that the kernel of a linear
map L : V1 → V2 is a subspace of V1.

Example 10.23

Let us revisit Example 10.15. We considered the linear map D : C[Z] → C[Z], sending a
polynomial p(Z) to its derivative. The only polynomials whose derivative is 0 are constant
polynomials, that is to say polynomials of the form p(Z) = a0. Hence ker D = {a0 | a0 ∈
C} = C. Note that {1} is a basis of ker D, so that we can conclude that dim ker D = 1.

With a view to a later application of the theory to differential equations, we consider
another example involving derivatives.
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Example 10.24

Let C∞ be the vector space of all infinitely differentiable functions from R to R, see Example
9.34. Let us consider the map L : C∞ → C∞ where f 7→ f ′ − f . As usual f ′ denotes the
derivative of the function f . Since f ∈ C∞, also f ′ is infinitely often differentiable, so that
f ′ ∈ C∞. One can show that L is a linear map. Using Definition 10.22, we see that ker L =

{ f ∈ C∞ | f ′ − f = 0}. In other words: the kernel of L consists of those functions f ∈
C∞ such that the derivative of f is the same as f itself. In yet other words: the kernel of
L consists exactly of all solutions in C∞ of the differential equation f ′ = f . An example
of a function satisfying this differential equation is the exponential function exp : R → R

defined by x 7→ ex. Also all scalar multiples f = c · exp with c ∈ R, are solutions to the
differential equation f ′ = f . It is in fact possible to show that there are no more solutions
in C∞. Hence ker L turns out to be a one-dimensional subspace of C∞ with basis {exp}.

Remark 10.25

The exponential function was also discussed in Example 2.22, but there its codomain
was defined to be R≥0. Strictly speaking, the exponential function from Example 2.22
is therefore not the same function as the exponential function we used in this example.
However, since both functions map any x ∈ R to exactly the same value, namely ex, it
is a bit overkill to use different notations for these functions. For this reason we have
denoted both functions with exp.

Example 10.26

As a final example of the kernel of a linear map, we consider the map ev from Example 10.20.
The map ev : C[Z]→ C2 was defined by p(Z) 7→ (p(0), p(1)). Hence we have

ker ev = {p(Z) ∈ C[Z] | (p(0), p(1)) = (0, 0)} = {p(Z) ∈ C[Z] | p(0) = 0 ∧ p(1) = 0}.

It is possible to describe the kernel of ev more specifically. Let us start by describing the set
of polynomials p(Z) satisfying p(0) = 0, that is to say, such that 0 is a root of p(Z). Using
Lemma 4.20, we conclude that

{p(Z) ∈ C[Z] | p(0) = 0} = {Z · q(Z) | q(Z) ∈ C[Z]}.

Now if both p(0) = 0 and p(1) = 0, then we see that p(Z) = Z · q(Z) for some q(Z) ∈ C[Z],
and p(1) = 0. But this is equivalent with saying that p(Z) = Z · q(Z) for some q(Z) ∈
C[Z] and q(1) = 0. Using Lemma 4.20 again, but now for q(Z) and the root 1, we see that
q(Z) = (Z − 1) · s(Z) for some s(Z) ∈ C[Z]. Hence we obtain p(Z) ∈ ker ev if and only if
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p(Z) = Z · (Z− 1) · s(X) for some s(Z) ∈ C[Z]. We conclude that

ker ev = {p(Z) ∈ C[Z] | p(0) = 0 ∧ p(1) = 0} = {Z · (Z− 1) · s(Z) | s(Z) ∈ C[Z]}.

10.3 Linear maps between finite dimensional vector
spaces

Let us assume that we are given a finite dimensional vector space V over a field F, say
dim V = n. In such a setting, we can choose an ordered basis of V, say β = (v1, . . . , vn),
where v1, . . . , vn are linearly independent vectors in V. As we have seen in Definition
9.16, for each v ∈ V, we can produce a unique coordinate vector [v]β ∈ Fn. This means
that we can define a function ϕβ : V → Fn by v 7→ [v]β. Now combining Lemma
9.17 and Definition 10.1, we can immediately conclude that the function ϕβ is a linear
map. Given a vector (c1, . . . , cn) ∈ Fn, it is simple to write down a vector of V having
(c1, . . . , cn) as its coordinate vector (with respect to β). Indeed, the vector v = c1 · v1 +
· · ·+ cn · vn is that vector and it is the only vector with coordinates (c1, . . . , cn) according
to Lemma 9.15! What we in fact have found is the inverse function of ϕβ. Let us put
these statements in a lemma and give a complete proof.

Lemma 10.27

Let F be a field, V a vector space over F of dimension n, and β = (v1, . . . , vn), an
ordered basis of V. Then the function ϕβ : V → Fn defined by v 7→ [v]β is a linear
map. Moreover, the function ψβ : Fn → V defined by (c1, . . . , cn) 7→ c1 · v1 + · · ·+
cn · vn is the inverse of ϕβ and also a linear map.

Proof. We have already shown in the discussion before this lemma that ϕβ : V → Fn is a
linear map of vector spaces over F. Now let us denote by ψβ : Fn → V the map defined
by (c1, . . . , cn) 7→ c1 · v1 + · · ·+ cn · vn. We first show that ψβ is the inverse function ϕ−1

β .
In order to check this, we need to show that ψβ ◦ ϕβ(v) = v for all v ∈ V as well as that
ϕβ ◦ ψβ(c1, . . . , cn) = (c1, . . . , cn) for all (c1, . . . , cn) ∈ Fn. We have

(ψβ ◦ ϕβ)(v) = ψβ([v]β) = v

and
(ϕβ ◦ ψβ)(c1, . . . , cn) = ϕβ(c1 · v1 + · · ·+ cn · vn) = (c1, . . . , cn).
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It is left to the reader to check that ψβ is a linear map.

The reason the linear maps ϕβ and ψβ are so useful, is that they can be used to describe
a general linear map more explicitly. More to the point, suppose that we are given a
linear map L : V1 → V2 as in Definition 10.1, but that we know that both V1 and V2
are finite dimensional vector spaces, say that dim V1 = n and dim V2 = m. This means
that we can choose an ordered basis of V1, say β = (v1, . . . , vn), where v1, . . . , vn are
linearly independent vectors in V1. Similarly, we can choose an ordered basis of V2, say
γ = (w1, . . . , wm), where w1, . . . , wm ∈ V2 are linearly independent vectors in V2. Then
instead of studying the abstract linear map L : V1 → V2, we will study the function
ϕγ ◦ L ◦ ψβ : Fn → Fm. The effect is that the abstract vector spaces V1 and V2 have been
replaced by the more down to earth vector spaces Fn and Fm. Using Theorem 10.21
in combination with Lemma 10.27, we can also conclude that the function ϕγ ◦ L ◦ ψβ

actually is a linear map of vector spaces over F, since it is the composite of linear maps.

We have in Section 10.1 seen that any matrix A ∈ Fm×n gives rise to a linear map
LA : Fn → Fm, by defining v 7→ A · v. In fact, any linear map from Fn to Fm is of
this form. Let us show this now:

Lemma 10.28

Let F be a field and L̃ : Fn → Fm a linear map. Then there exists exactly one matrix
A ∈ Fm×n such that L̃ = LA. Moreover, if we denote by e1, . . . , en the standard basis
of Fn, then A is the matrix whose columns consist of L̃(e1), . . . , L̃(en).

Proof. If v = (c1, . . . , cn) ∈ Fn, then v = c1 · e1 + · · ·+ cn · en, since the i-th standard basis
vector of Fn has a one in coordinate i and zeroes otherwise. Since L̃ is a linear map, we
have L̃(v) = L̃(c1 · e1 + · · ·+ cn · en) = c1 · L̃(e1) + · · ·+ cn · L̃(en). Hence the matrix A
with columns L̃(e1), . . . , L̃(en) satisfies that A · v = c1 · L̃(e1) + · · ·+ cn · L̃(en) = L̃(v).
This shows that L̃ = LA.

What is left to show is that the matrix A is unique. Suppose that there exist another
matrix B ∈ Fm×n such that L̃ = LB. We want to show that A = B. If A ̸= B, one
can find a column, say column i, where the matrices A and B are distinct. Note that
the ith column of A equals L̃(ei) by construction of the matrix A. On the other hand,
L̃(ei) = LB(ei) = B · ei, which is precisely the ith column of B. Apparently, the ith
columns of A and B are both equal to L(ei) and not distinct after all. This contradiction
show that the assumption A ̸= B cannot be valid and therefore that A = B.
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Given a linear map L : V1 → V2 we will apply this lemma to the associated linear map
L̃ = ϕγ ◦ L ◦ ψβ : Fn → Fm. Let us before continuing with the general theory, first
consider an example.

Example 10.29

We revisit Example 10.19. In that example V1 was the vector space consisting of polynomials
in C[Z] of degree at most three and V2 the vector space of polynomials in C[Z] of degree at
most four. Hence as ordered basis for V1, we can choose β = (1, Z, Z2, Z3), while a possible
ordered basis for V2 is given by γ = (1, Z, Z2, Z3, Z4). The linear map L : V1 → V2 described
in Example 10.19 mapped a polynomial p(Z) to (i + 2Z) · p(Z).

Let us start by explaining what the linear map ϕγ : V2 → F5 is in this case. An element in V2

is a polynomial of degree at most four. Hence v ∈ V2 is a polynomial of the form a0 + a1Z +

· · · + a4Z4 with a0, a1, . . . , a4 ∈ C, which is already written as a linear combination of the
vectors in the ordered basis (1, Z, . . . , Z4). Hence ϕγ(a0 + a1Z + · · ·+ a4Z4) = (a0, a1, . . . , a4),
or in vector notation:

ϕγ(a0 + a1Z + · · ·+ a4Z4) =


a0

a1
...

a4

 .

Similarly,

ψβ




b0

b1

b2

b3


 = b0 + b1Z + b2Z2 + b3Z3.

We can describe the linear map L by figuring out what happens with the vectors in the cho-
sen ordered basis β when L is applied. It is convenient to express the outcome as a linear
combination of the vectors in the chosen ordered basis γ. We obtain:

L(1) = (i + 2Z) · 1 = i + 2Z, L(Z) = (i + 2Z) · Z = iZ + 2Z2,

L(Z2) = (i + 2Z) · Z2 = iZ2 + 2Z3, L(Z3) = (i + 2Z) · Z3 = iZ3 + 2Z4.

Now let us compute the matrix A described in Lemma 10.28. We need to compute L̃(ei) for
i = 1, . . . , 4, where (e1, e2, e3, e4) is the standard ordered basis of F4 and L̃ = ϕγ ◦ L ◦ ψβ :
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F4 → F5. Then we find:

L̃(e1) = (ϕγ ◦ L ◦ ψβ) (e1) = (ϕγ ◦ L ◦ ψβ)




1
0
0
0




= (ϕγ ◦ L)(1)

= ϕγ(i + 2Z)

=


i
2
0
0
0


and similarly

L̃(e2) =


0
i
2
0
0

 , L̃(e3) =


0
0
i
2
0

 , and L̃(e4) =


0
0
0
i
2

 .

Using Lemma 10.28, we see that L̃ = ϕγ ◦ L ◦ ψβ = LA, where

A =


i 0 0 0
2 i 0 0
0 2 i 0
0 0 2 i
0 0 0 2

 .

Definition 10.30

Let F be a field and L : V1 → V2 a linear map between two finite dimensional vector
spaces, say dim V1 = n and dim V2 = m. Let β be an ordered basis of V1 and γ one of
V2. Then we denote with γ[L]β ∈ Fm×n the matrix described in Lemma 10.28 when
applied to the linear map L̃ = ϕγ ◦ L ◦ ψβ : Fn → Fm. We say that the matrix γ[L]β
is the matrix representation of L with respect to the ordered bases β and γ. One also
calls γ[L]β the mapping matrix of L with respect to the ordered bases β and γ.
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To avoid unnecessary computations, let us describe the mapping matrix γ[L]β more
directly:

Lemma 10.31

Let F be a field and L : V1 → V2 a linear map between two finite dimensional vector
spaces, say dim V1 = n and dim V2 = m. Let β = (v1, . . . , vn) be an ordered basis of
V1 and γ one of V2. Then the mapping matrix of L with respect to the ordered bases
β and γ has [L(v1)]γ, . . . , [L(vn)]γ as columns. That is to say:

γ[L]β = [[L(v1)]γ · · · [L(vn)]γ].

Proof. Combining Definition 10.30 and Lemma 10.28, we see that γ[L]β has columns
L̃(e1), . . . , L̃(en), where e1, . . . , en is the standard basis for Fn and L̃ = ϕγ ◦ L ◦ ψβ. Now
note that for all i between 1 and n, we have ψβ(ei) = vi using the definition of ψβ given
in Lemma 10.27. Further, ϕγ(w) = [w]γ for all w ∈ V2 by definition of the map ϕβ.
Hence we see that for all i between 1 and n, we have

L̃(ei) = (ϕγ ◦ L ◦ ψβ)(ei) = (ϕγ ◦ L)(vi) = ϕγ(L(vi)) = [L(vi)]γ.

In Example 10.29, we already computed the matrix representation of a linear map (the
matrix denoted by A in the example). Let us consider a few more examples.

Example 10.32

This example is a continuation of Example 10.18. There, for α ∈ R, we considered the linear
map Rα : R2 → R2 defined by Rα(v1, v2) = (cos(α) · v1 − sin(α) · v2, sin(α) · v1 + cos(α) · v2).

Choosing the standard ordered basis β = γ =

[
1
0

]
,
[

0
1

]
for R2 both in case of the domain

and the codomain of the linear map Rα, we obtain that

γ[Rα]β =

[
cos(α) − sin(α)
sin(α) cos(α)

]
. (10-4)
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The point of representing a linear map L with the matrix γ[L]β, is that the structure of
the original linear map is “encoded” in this matrix. The following theorem makes this
more precise.

Theorem 10.33

Let F be a field and V1, V2 and V3 three finite dimensional vector spaces over F.
Further, let β, γ and δ be ordered bases of respectively V1, V2 and V3. Then one has

1. [L(v)]γ = γ[L]β · [v]β for any linear map L : V1 → V2 and any v ∈ V1.

2. δ[M ◦ L]β = δ[M]γ · γ[L]β for any linear maps L : V1 → V2 and M : V2 → V3.

Proof. We first prove the first item. Let us write A = γ[L]β for convenience. We have
seen that ϕγ ◦ L ◦ ψβ = LA, using the notation from Lemma 10.27. Hence ϕγ ◦ L = LA ◦
(ψβ)

−1 = LA ◦ ϕβ. But then for any v ∈ V1, we obtain that (ϕγ ◦ L)(v) = (LA ◦ ϕβ)(v).
Simplifying the left-hand and right-hand side, we find that

(ϕγ ◦ L)(v) = ϕγ(L(v)) = [L(v)]γ

and
(LA ◦ ϕβ)(v) = LA(ϕβ(v)) = LA([v]β) = γ[L]β · [v]β.

Hence [L(v)]γ = γ[L]β · [v]β, which is what we needed to show.

The proof of the second item is somewhat similar. We write A = γ[L]β and B = δ[M]γ
for convenience. We have LA = ϕγ ◦ L ◦ ψβ and LB = ϕδ ◦M ◦ ψγ, which implies that
LB ◦ LA = ϕδ ◦M ◦ψγ ◦ ϕγ ◦ L ◦ψβ. Now using that ψγ and ϕγ are each other’s inverses,
see Lemma 10.27, we obtain that LB ◦ LA = ϕδ ◦ M ◦ L ◦ ψβ. Since on the one hand
LB ◦ LA = LB·A and on the other hand ϕδ ◦ M ◦ L ◦ ψβ = LC with C = δ[M ◦ L]β, this
implies that δ[M ◦ L]β = B ·A = δ[M]γ · γ[L]β. This is what we wanted to show.

The first item in this theorem simply tells us that the matrix γ[L]β contains all informa-
tion we need to know to describe the linear map L: computing L(v) and then computing
the coordinate vector of the outcome with respect to the ordered basis γ of V2, is exactly
the same as multiplying the matrix γ[L]β with the coordinate vector of v with respect to
the ordered basis β of V1. The second item says that composition of linear maps behaves
nice with respect to matrix representations. Let us look at an example of this.
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Example 10.34

We continue with Example 10.32. We have seen that if we choose β and γ to be the standard
basis of R2, then γ[Rα]β is as in equation (10-4). Recall that the map Rα : R2 → R2 itself,
geometrically can be described as a rotation over an angle α against the clock with midpoint
in the origin. In particular Rπ/2 corresponds with a rotation over π/2 radians (90 degrees).
This means that Rπ/2 ◦ Rπ/2 = Rπ, a rotation over π radians (180 degrees). In particular,
this means that Rπ(v1, v2) = (−v1,−v2). Let us check the second item in Theorem 10.33 for

V1 = V2 = V3 = R2, β = γ = δ = (

[
1
0

]
,
[

0
1

]
) and L = M = Rπ/2. Then on the one hand

we have

δ[Rπ/2]γ = γ[Rπ/2]β =

[
0 −1
1 0

]
and therefore

δ[Rπ/2]γ · γ[Rπ/2]β =

[
0 −1
1 0

]
·
[

0 −1
1 0

]
=

[
−1 0
0 −1

]
.

On the other hand, using equation (10-4) for α = π, we see that

δ[Rπ/2 ◦ Rπ/2]β = δ[Rπ]β =

[
−1 0
0 −1

]
.

We conclude that indeed δ[Rπ/2 ◦ Rπ/2]β = δ[Rπ/2]γ · γ[Rπ/2]β, just as it should be.

If one would do the same computation for M = Rα1 and L = Rα2 and use that Rα1 ◦ Rα2 =

Rα1+α2 , one obtains that[
cos(α1) − sin(α1)

sin(α1) cos(α1)

]
·
[

cos(α2) − sin(α2)

sin(α2) cos(α2)

]
=

[
cos(α1 + α2) − sin(α1 + α2)

sin(α1 + α2) cos(α1 + α2)

]
.

This identity actually implies the addition formulas for the cosine and the sine that we used
in the proof of Lemma 3.18:

cos(α1 + α2) = cos(α1) cos(α2)− sin(α1) sin(α2)

and
sin(α1 + α2) = sin(α1) cos(α2) + cos(α1) sin(α2).
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Example 10.35

Let F = R and V1 = R2, V2 = R2 and let

A =

[
1 1
2 0

]
.

Denote by LA : R2 → R2 the linear map defined by v 7→ A · v. We have for example

LA

([
−1
2

])
=

[
1 1
2 0

]
·
[
−1
2

]
=

[
1
−2

]
and

LA

([
1
1

])
=

[
1 1
2 0

]
·
[

1
1

]
=

[
2
2

]

Question:

1. Choosing the standard ordered bases β = γ = (

[
1
0

]
,
[

0
1

]
) for V1 and V2, compute

γ[LA]β.

2. Choosing the ordered bases β = γ = (

[
−1
2

]
,
[

1
1

]
) for V1 and V2, compute γ[LA]β.

Answer:

1. Since γ is chosen to be the standard basis and[
v1

v2

]
= v1 ·

[
1
0

]
+ v2 ·

[
0
1

]
,

we see that
[

v1

v2

]
γ

=

[
v1

v2

]
for all v1, v2 ∈ R. Using Lemma 10.31, we see that

γ[LA]β = [[LA(e1)]γ [LA(e2)]γ] = [LA(e1) LA(e2)] = [A · e1 A · e2] =

[
1 1
2 0

]
= A.

One can in fact see in a similar way that for any field F and any matrix A ∈ Fm×n, one
has γ[LA]β = A if β and γ are the standard ordered bases of Fm and Fn.
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2. Now we choose the ordered bases β = γ = (

[
−1
2

]
,
[

1
1

]
) for V1 and V2. Using

Lemma 10.31, we see that

γ[LA]β =

[
[LA

([
−1
2

])
]γ [LA(

[
1
1

]
)]γ

]
=

[
[A ·

[
−1
2

]
]γ [A ·

[
1
1

]
]γ

]
=

[[
1
−2

]
γ

[
2
2

]
γ

]
.

Now in order to compute [w]γ for w ∈ R2, one needs in general to solve a linear system
of equations. More precisely, let us write w = (w1, w2), then we want to find c1, c2 ∈ R2

such that [
w1

w2

]
= c1 ·

[
−1
2

]
+ c2 ·

[
1
1

]
.

Therefore we need to solve the system of linear equations in the indeterminates c1 and
c2 given by: [

−1 1
2 1

]
·
[

c1

c2

]
=

[
w1

w2

]
.

This can in principle be done using the theory of Chapter 6 or by multiplying the sys-
tem on both sides of the equality sign with the matrix[

−1 1
2 1

]−1

=
1
3

[
−1 1
2 1

]
.

However, in this case we are lucky, since we can see directly that[
1
−2

]
= (−1) ·

[
−1
2

]
and hence

[
1
−2

]
γ

=

[
−1
0

]
and [

2
2

]
= 2 ·

[
1
1

]
, implying

[
2
2

]
γ

=

[
0
2

]
.

We conclude that

γ[LA]β =

[
−1 0
0 2

]
.

The result is a surprisingly nice looking matrix: it is a diagonal matrix (see Definition
8.5).

As a last item in this section, we consider matrices of the form γ[L]β in case L is the
identity map from a vector space V to itself: idV : V → V, v 7→ v. Here β and γ are two,
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possibly distinct, ordered bases of V. From the first part of Theorem 10.33, we see that

γ[idV ]β · [v]β = [v]γ for all v ∈ V. (10-5)

In words equation (10-5) states that if one multiplies the matrix γ[idV ]β with the β-
coordinate vector of a vector v in V, the outcome is the γ-coordinate vector of v. For
this reason, the matrix γ[idV ]β is called a change of coordinates matrix also known as a
change of basis matrix .

Example 10.36

Let V = {p(Z) ∈ C[Z] | deg p(Z) ≤ 3}. Then β = (1, Z, Z2, Z3) and γ = (Z3, Z2, Z, 1) are
two ordered bases of V. Question: Compute the corresponding change of coordinates matrix
γ[idV ]β.

Answer: Using Lemma 10.31, what we need to do is to compute [1]γ, [Z]γ, [Z2]γ and [Z3]γ.
Since the only difference between β and γ is the order of the basis vectors this is not so hard
to do. For example

[1]γ =


0
0
0
1

 ,

since 1 is the fourth basis vector of γ. Proceeding similarly for the other basis vectors, one
obtains the desired change of coordinates matrix:

γ[idV ]β =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



We finish this section with a few facts on change of coordinates matrices that will come
in handy later.
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Lemma 10.37

Let F be a field, V a vector space over F of finite dimension n and β, γ and δ ordered
bases of V. Then

1. δ[idV ]γ · γ[idV ]β = δ[idV ]β,

2. β[idV ]β = In, where In denotes the n× n identity matrix, and

3. (γ[idV ]β)
−1 = β[idV ]γ.

Proof. The first item follows directly from the second item in Theorem 10.33. The second
item is clear, since if the ordered basis β is not changed, the coordinates of a vector with
respect to β do not change either. For the third item, note that according to the first
and second part of the theorem, we have γ[idV ]β · β[idV ]γ = γ[idV ]γ = In and similarly

β[idV ]γ · γ[idV ]β = β[idV ]γ = In. Hence (γ[idV ]β)
−1 = β[idV ]γ.

10.4 Usages of the matrix representation of a linear map

Now that we have the ability to represent linear maps between finite dimensional vector
spaces with a matrix, we will use this to describe in more detail how to compute the
kernel and image of a linear map. We start with a more general description of solutions
to equations involving a linear map.

Theorem 10.38

Let F be a field and L : V1 → V2 a linear map between vector spaces over F. Further,
let a vector w ∈ V2 be given and denote by S = {v ∈ V1 | L(v) = w}. Then exactly
one of the following two possibilities occurs:

1. S = ∅. This is the case if and only if w ̸∈ imageL.

2. S = {vp + v | v ∈ ker L}, where vp ∈ V1 is a vector such that L(vp) = w.

Proof. If S = ∅, then the equation L(v) = w has no solutions. This is equivalent to the
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statement that no vector v ∈ V1 is mapped to w. This in turn is the same as saying that
w is not in the image of L.

If S ̸= ∅, we may conclude that there exists a vector vp ∈ V1 such that L(vp) = w. If ṽ
is some vector, such that L(ṽ) = w, then using linearity of L, we see that L(ṽ− vp) =
w−w = 0. Hence ṽ− vp ∈ ker L. Since ṽ = vp + (ṽ− vp) and, as we already have seen
ṽ− vp ∈ ker L, this shows that S ⊆ {vp + v | v ∈ ker L}. Conversely, if a vector is of
the form vp + v for some v ∈ ker L, then L(vp + v) = L(vp) + L(v) = w + 0 = w. This
shows that {vp + v | v ∈ ker L} ⊆ S. Combining both inclusions, we may conclude that
S = {vp + v | v ∈ ker L}.

Hence the structure of the solution set of an equation of the form L(v) = w is completely
determined. The vector vp, if it exists, is called a particular solution. Notice how similar
this is to Theorem 6.10. This is not a coincidence. After all, the solution set to a system
of linear equations with augmented matrix [A|b] is exactly the same as the solution set
to the equation LA(v) = b. Moreover, ker LA is exactly the same as the solution set to
the homogeneous system of linear equations with coefficient matrix A. Hence, Theorem
6.10 is really just a special case of Theorem 10.38.

In case both V1 and V2 are finite dimensional vector spaces, we can computationally
solve an equation of the form L(v) = w by solving a suitable system of linear equations.
We make this more precise in the following theorem.

Theorem 10.39

Let F be a field and L : V1 → V2 a linear map between finite dimensional vector
spaces over F. Let β = (v1, . . . , vn) be an ordered basis of V1 and γ = (w1, . . . , wm)
be an ordered basis of V2. Then

{v ∈ V1 | L(v) = w} = {c1 ·v1 + · · · cn ·vn | c = (c1, . . . , cn) satisfies γ[L]β · c = [w]γ}.

In particular

ker L = {c1 · v1 + · · · cn · vn | (c1, . . . , cn) ∈ ker γ[L]β}.

Proof. Applying Lemma 10.27 to the vector space V1 and the given ordered basis β, we
see that the linear maps ϕβ : V1 → Fn defined by v 7→ [v]β and ψβ : Fn → V1 defined by
(c1, . . . , cn) 7→ c1 · v1 + · · ·+ cn · vn are inverses of each other.
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Assume that L(v) = w, then [L(v)]γ = [w]γ, which using the first item in Theorem
10.33 implies that γ[L]β[v]β = [w]γ. If we write (c1, . . . , cn) = [v]β, then v = c1 · v1 +
· · ·+ cn · vn. This shows that

{v ∈ V1 | L(v) = w} ⊆ {c1 · v1 + · · · cn · vn | c = (c1, . . . , cn) satisfies γ[L]β · c = [w]γ}.

Conversely, assume that c = (c1, . . . , cn) ∈ Fn satisfying γ[L]β · c = [w]γ is given. The
vector v = c1 · v1 + · · · cn · vn has the property that [v]β = c. Therefore γ[L]β · [v]β =
[w]γ. Using Theorem 10.33 again, we see that [L(v)]γ = [w]γ. But then L(v) = w. This
shows that

{v ∈ V1 | L(v) = w} ⊇ {c1 · v1 + · · · cn · vn | c = (c1, . . . , cn) satisfies γ[L]β · c = [w]γ}.

Combining the above two inclusions, we see that the first part of the theorem follows.

Choosing w = 0, the statement on ker L follows.

The point of this theorem is that in order to compute all solutions to the equation L(v) =
w, it is enough to compute all solutions to the equation γ[L]β · c = [w]γ. The latter
equation is a system of linear equation with augmented matrix [γ[L]β|[w]γ], which we
can solve using the techniques from Chapter 6. The fact that the kernel of a linear map
can be computed using the matrix representation of that map, has a nice consequence
known as the rank-nullity theorem for linear maps.

Corollary 10.40

Let F be a field and L : V1 → V2 a linear map between finite dimensional vector
spaces over F. Then

dim(ker L) + dim(imageL) = dim V1.

Proof. If {v1, . . . , vd} is basis of ker L, then {[v1]β, . . . , [vd]β} is a basis of ker γ[L]β using
Theorem 9.18. Hence dim ker L = dim ker γ[L]β. Moreover, dim imageL = dim imageγ[L]β
using Corollary 9.39. Then the result follows from the rank-nullity theorem for matrices
(see Theorem 10.10).
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Example 10.41

This example is a variation of Example 10.26. In that example, we consider the map ev :
C[Z] → C2 defined by p(Z) 7→ (p(0), p(1)) and computed its kernel. Let V1 ⊆ C[Z] be the
subspace of C[Z] consisting of all polynomials of degree at most three. Then β = (1, Z, Z2, Z3)

is an ordered basis of V1. For C2, we choose the standard ordered basis (e1, e2). Now let us
consider the linear map L : V1 → C2 defined by L(p(Z)) = (p(0), p(1)). In other words: we
restrict the domain of ev to V1, but otherwise do not change anything.

Questions: What is the kernel of the linear map L described above? What are all solutions to
the equation L(p(Z)) = (5, 8)?

Answer:

We can compute ker L in several ways, but let use Theorem 10.39. To compute ker L, we first
compute the kernel of γ[L]β. We have L(1) = (1, 1) = 1 · e1 + 1 · e2, L(Z) = (0, 1) = 1 · e2,
L(Z2) = (0, 1) = 1 · e2, and L(Z3) = (0, 1) = 1 · e2. Hence

γ[L]β =

[
1 0 0 0
1 1 1 1

]
.

Computing the reduced row echelon form of this matrix in this case just amounts to subtract-
ing the first row from the second row. One finds the matrix:[

1 0 0 0
0 1 1 1

]
.

Hence using Theorem 6.29 and Corollary 9.38, we find that a basis of kerγ[L]β is given by the
set 


0
−1
1
0

 ,


0
−1
0
1


 .

and hence a basis of ker L is given by the set {−Z + Z2,−Z + Z3.} Hence

ker L = {t1 · (−Z + Z2) + t2 · (−Z + Z3) | t1, t2 ∈ C}.

To solve the final question about the solutions to the equation L(p(Z)) = (5, 8), we use
Theorem 10.38. All we still need to do is to compute a particular solution. We could in
principle again transform the equation into a system of linear equations. Doing this would
give rise to a system of inhomogeneous linear equations with augmented matrix[

1 0 0 0 5
1 1 1 1 8

]
,
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which has reduced row echelon form[
1 0 0 0 5
0 1 1 1 3

]
.

A particular solution (c1, c2, c3, c4) should satisfy c1 = 5 and c2 + c3 + c4 = 3. Therefore
(5, 3, 0, 0) is a particular solution, which corresponds to the polynomial f (Z) = 5+ 3Z. Using
Theorem 10.38, we conclude that all solutions to the equation L(p(Z)) = (5, 8) form the set

{5 + 3Z + t1 · (−Z + Z2) + t2 · (−Z + Z3) | t1, t2 ∈ C}.

Just as an aside: another way to compute ker L is to use that we already have computed the
kernel of ev : C[Z]→ C2 in Example 10.26. Then

ker L = ker ev∩V1

= {Z · (Z− 1) · s(Z) | s(Z) ∈ C[Z]} ∩V1

= {Z · (Z− 1) · s(Z) | s(Z) ∈ C[Z], deg s(Z) ≤ 1}.

Here we used that Z · (Z − 1) · s(Z) ∈ V1 precisely if deg(Z · (Z − 1) · s(Z)) ≤ 3. Since
deg(Z · (Z − 1) · s(Z)) = 1 + 1 + deg s(Z), we see that Z · (Z − 1) · s(Z) ∈ V1 precisely if
deg s(Z) ≤ 1. It is left to the reader to check that this computation of ker L gives exactly the
same result as before.
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Note 11

The eigenvalue problem and
diagonalization

Let us take a look at Example 10.35 again. In it, we considered the matrix

A =

[
1 1
2 0

]
∈ R2×2

and the linear map LA : R2 → R2 associated to it. We further saw that if we chose the

same ordered basis β = (

[
−1
2

]
,
[

1
1

]
) for both the domain and the codomain of LA,

then the resulting mapping matrix β[LA]β of LA was particularly nice:

β[LA]β =

[
−1 0
0 2

]
.

In this chapter, we investigate to which extent this can be done for an arbitrary square
matrix.

11.1 Eigenvalues and eigenvectors

We start out by studying linear maps L : V → V. The difference with our previous
studies of linear maps is that we now assume that the domain of L is the same as the
codomain of L, namely the vector space V.
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Definition 11.1

Let F be a field, V a vector space over F and L : V → V a linear map. Let v ∈ V be a
nonzero vector and λ ∈ F a scalar such that

L(v) = λ · v.

Then the vector v is called an eigenvector of the linear map L with eigenvalue λ.

Note that by definition an eigenvector is always a nonzero vector. The reason for this
is to avoid uninteresting solutions to the equation L(v) = λ · v. Indeed, if one chooses
v = 0 and any λ ∈ F, then it will hold that L(v) = λ · v, since L(0) = 0 and λ · 0 = 0.
Further note that an eigenvalue always is an element from the field F over which V is a
vector space. Intuitively, what an eigenvector of a linear operator L is, is a vector that is
scaled when L operates on it. Indeed, we can think of λ · v as a scaling of the vector v
by a factor λ. For matrices one can also talk about eigenvectors and eigenvalues:

Definition 11.2

Let F be a field, n a positive integer and A ∈ Fn×n a matrix. Let v ∈ Fn be a nonzero
vector and λ ∈ F a scalar such that

A · v = λ · v.

Then the vector v is called an eigenvector of the matrix A with eigenvalue λ.

Note that this definition assumed that the matrix A is a square matrix. As we have seen,
a matrix A ∈ Fm×n gives rise to a linear map LA : Fn → Fm. If m = n, we therefore see
that a square matrix A ∈ Fn×n gives rise to a linear map LA : Fn → Fn. Note that v ∈ Fn

is an eigenvector of a square matrix A ∈ Fn×n if and only if v ∈ Fn is an eigenvector
of the linear map LA : Fn → Fn. In that sense Definition 11.2 is just a special case of
Definition 11.1. Also for matrices it holds that if the field is specified to be F, then its
eigenvalues are by definition elements of that field F.

Let us consider some examples.
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Example 11.3

Let F = R and let us consider the matrix

A =

[
−1 0
0 2

]
∈ R2×2.

Question: Determine all possible eigenvalues of the matrix A as well as a corresponding
eigenvector.

Answer: Assume that v = (v1, v2) ∈ R2 \ {(0, 0)} is an eigenvector with eigenvalue λ. The
equation A · v = λ · v is equivalent to the two equations −v1 = λv1 and 2v2 = λv2. These
two equations can be rewritten as (−1− λ)v1 = 0 and (2− λ)v2 = 0, which in turn can be
written in matrix form as follows:[

−1− λ 0
0 2− λ

]
·
[

v1

v2

]
=

[
0
0

]
. (11-1)

Now we distinguish three cases.

In the first case we assume that −1− λ ̸= 0 and 2− λ ̸= 0. In other words: we assume that
λ ̸= −1 and λ ̸= 2. In this case the diagonal elements of the matrix occurring in equation
(11-1) are both nonzero. Hence the only solution to equation (11-1) is (v1, v2) = (0, 0). How-
ever, eigenvectors are by definition not equal to the zero vector, so we conclude that in this
case there are no eigenvectors with eigenvalue λ.

In case two, we assume that λ = −1. In this case equation (11-1) has solutions of the form
(v1, 0), where v1 ∈ R can be chosen freely. Hence λ = −1 is an eigenvalue of the given

matrix A. As eigenvector we can choose any vector of the form
[

v1

0

]
as long as v1 ̸= 0. For

example
[

1
0

]
is an eigenvector of the given matrix A with eigenvalue −1.

Finally, as the third and final case, we assume that λ = 2. In this case equation (11-1) has
solutions of the form (0, v2), where v2 ∈ R can be chosen freely. Hence λ = 2 is an eigenvalue

of the given matrix A. As eigenvector we can choose any vector of the form
[

0
v2

]
as long as

v2 ̸= 0. For example
[

0
1

]
is an eigenvector of the given matrix A with eigenvalue 2.

Also in case V is an infinite dimensional vector space, the definition of eigenvectors and
eigenvalues makes sense. We consider an example of this type.
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Example 11.4

Let us consider the linear map D : C[Z] → C[Z] defined in Example 10.15. In particular, we
are working over the field C, since in Example 10.15 we considered C[Z] as a complex vector
space. The map D was defined by sending a polynomial to its derivative.

Question: What are the possible eigenvalues of D? Also for each possible eigenvalue, find a
corresponding eigenvector.

Answer: We are looking for nonzero polynomials p(Z) in C[Z] and scalars λ ∈ C such that
D(p(Z)) = λ · p(Z). Let p(Z) = a0 + a1Z+ a2Z2 + · · ·+ anZn be a nonzero polynomial. Since
D(a0 + a1Z + a2Z2 + · · ·+ anZn) = a1 + 2a2Z + · · ·+ nanZn−1, the degree of the polynomial
D(p(Z)) will typically be one less than the degree of the polynomial p(Z) itself. The only
exception is if p(Z) = a0, in which case D(p(Z)) = 0. Hence D(p(Z)) = λ · p(Z) can
only hold for constant polynomials. If p(Z) is a constant polynomial, then p(Z) = a0 and
D(a0) = 0 = 0 · a0. This shows that 0 is the only eigenvalue that the linear map D has. Any
polynomial p(Z) = a0 with a0 ∈ C \ {0} is an eigenvector of D with eigenvalue 0. The reason
that the zero polynomial is not an eigenvector of D is that by definition eigenvectors must be
nonzero. As this example shows, eigenvalues themselves can be zero.

The previous two examples, may suggest that a linear map always has at least one
eigenvector, but this is not the case. Let us consider such an example.

Example 11.5

The rotation map Rπ/2 : R2 → R2 from Example 10.18 was defined by Rπ/2(v1, v2) =

(−v2, v1).

Question: Does the linear map Rπ/2 : R2 → R2 have any eigenvectors?

Answer: Let us first give an intuitive answer and after that one using the definitions more
directly. What the linear map Rπ/2 does geometrically, is to take a vector as input and return
as output the vector rotated over π/2 radians against the clock. If a nonzero vector would
be an eigenvector, that would mean that rotation over π/2 radians would output a scaling
of the input vector. This is intuitively not possible, so what we expect is that the linear map
Rπ/2 has no eigenvectors at all.

Let us now proceed to prove this using the definitions. If the map Rπ/2 : R2 → R2 does
have eigenvectors, there exists (v1, v2) ∈ R2 \ {(0, 0)} and λ ∈ R such that Rπ/2(v1, v2) =
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λ · (v1, v2). Equivalently (−v2, v1) = (λ · v1, λ · v2), which in turn can be rewritten as the two
equations −λv1 − v2 = 0 and v1 − λv2 = 0. Formulated in matrix form, we would get the
matrix equation [

−λ −1
1 −λ

]
·
[

v1

v2

]
=

[
0
0

]
.

Adding λ times the second row to the first row, we obtain the equation −(1 + λ2)v2 = 0. But
this implies that v2 = 0, since λ2 + 1 is not zero for any λ ∈ R. Then using the second row,
we also see that v1 = 0. We conclude that (v1, v2) = (0, 0), but eigenvectors were not allowed
to be the zero vector. Hence the linear map Rπ/2 : R2 → R2 has no eigenvectors.

The procedure of determining the possible eigenvectors and eigenvalues in the previous
examples was quite ad hoc. Fortunately, there is a procedure that always works in case
V has a finite dimension. We will explain this procedure now, starting with eigenvalues
of a square matrix.

Theorem 11.6

Let F be a field and A ∈ Fn×n a square matrix. Then λ ∈ F is an eigenvalue of A if
and only if det(A− λ · In) = 0, where In denotes the n× n identity matrix.

Proof. If λ ∈ F is an eigenvalue of the matrix A, then there exists a nonzero vector
v ∈ Fn such that A · v = λ · v. Since λ · v = λ · (In · v) = (λ · In) · v, we see that the
equation A · v = λ · v can be rewritten as A · v = (λ · In)v, which in turn can be rewritten
as (A− λ · In) · v = 0. This shows that the homogeneous system of linear equations with
coefficient matrix A− λ · In has a nonzero solution. Using Corollary 8.26 for the square
matrix A− λ · In, we conclude that det(A− λ · In) = 0.

Conversely, if det(A− λ · In) = 0, Corollary 8.26 implies that the homogeneous system
of linear equations with coefficient matrix A− λ · In has a nonzero solution. Any such
nonzero solution v ∈ Fn then satisfies (A − λ · In) · v = 0. This can be rewritten as
A · v = λ · v. Hence v is an eigenvalue of A with eigenvalue λ.

For a given square matrix A ∈ Fn×n, the expression det(A − Z · In) is a polynomial
in F[Z] of degree n. This polynomial is called the characteristic polynomial of A. We
will denote it by pA(Z). The roots of this polynomial in the field F are exactly all the
eigenvalues of the matrix A.
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Example 11.7

Theorem 11.6 makes it possible to describe all possible eigenvalues of a square matrix. For
example, for the matrix

A =

[
−1 0
0 2

]
∈ R2×2

that we considered in Example 11.3, we have

pA(Z) = det(A−Z · I2) = det
([
−1− Z 0

0 2− Z

])
= (−1−Z) · (2−Z) = (Z+ 1) · (Z− 2).

Therefore the roots of the characteristic polynomial pA(Z) are precisely−1 and 2. This means
that the eigenvalues of the matrix A are−1 and 2. Looking back at Example 11.3 we can make
the answer given there a bit shorter, since the first case we considered is no longer needed.
Indeed, in the first case, we considered all λ such that λ ̸= −1 and λ ̸= 2, but now we know
already that there are no eigenvectors with such an eigenvalue λ.

Example 11.8

As a second example, let us consider the matrix

A =

[
0 −1
1 0

]
∈ R2×2.

We have seen in Example 10.34 that his matrix represents the linear map Rπ/2 : R2 → R2 if
the standard ordered basis is chosen for R2. In this case

pA(Z) = det(A− Z · I2) = det
([
−Z −1

1 −Z

])
= Z2 + 1.

Since we are working over the real numbers R and the polynomial Z2 + 1 has no roots in
R, we conclude that the matrix A, when studied over R, has no eigenvalues and hence no
eigenvectors.

Now that we know how to find eigenvalues of a square matrix, it is natural to ask
how to find eigenvectors. We will return to that question in the next section. In the
remainder of this section, we will explain how to find eigenvalues of an arbitrary linear
map L : V → V in case V is a finite dimensional vector space.
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Theorem 11.9

Let F be a field, V a vector space over F of dimension n and (v1, . . . , vn) an ordered
basis of V. Then λ ∈ F is an eigenvalue of a linear map L : V → V if and only if
det(β[L]β − λ · In) = 0.

Proof. If λ ∈ F is an eigenvalue of the linear map L : V → V, then there exists a nonzero
vector v ∈ V such that L(v) = λ · v. Hence by the first item in Theorem 10.33, we have
β[L]β · [v]β = [L(v)]β = [λ · v]β. Applying Lemma 9.17, we have [λ · v]β = λ · [v]β.
Combining these two equations, we obtain that β[L]β · [(v)]β = λ · [v]β. Hence [v]β is an
eigenvector of the matrix β[L]β with eigenvalue λ.

Conversely, suppose that det(β[L]β − λ · In) = 0 for some λ ∈ F. Then by Theorem
11.6, λ is an eigenvalue of the matrix β[L]β. Hence there exists a nonzero vector c =
(c1, . . . , cn) ∈ Fn that is an eigenvector of the matrix β[L]β with eigenvalue λ. Now
define v = c1 · v1 + · · · + cn · vn ∈ V. Then c = [v]β. Hence we have β[L]β · [(v)]β =
λ · [v]β, which implies [L(v)]β = λ · [v]β = [λ · v]β. This implies that L(v) = λ · v. Hence
λ is an eigenvalue of the linear map L : V → V.

This theorem shows that if V is a finite dimensional vector space, we can reduce the
calculation of eigenvalues of a linear map L : V → V directly to the calculation of the
eigenvalues of the square matrix β[L]β representing the linear map. Here it does not
matter at all, which ordered basis of V one chooses. For future use, let us nonethe-
less investigate the effect of choosing another ordered basis on the matrix representing
L. Here the change of coordinate matrices introduced in equation (10-5) will play an
important role.

Lemma 11.10

Let F be a field, V a vector space over F of dimension n, and L : V → V a linear
map. Further let β and γ be two ordered bases of V and denote by idV : V → V the
identity map v 7→ v. Then

γ[L]γ = (β[idV ]γ)
−1 · β[L]β · β[idV ]γ.
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Proof. We know from Lemma 10.37 that (β[idV ]γ)
−1 = γ[idV ]β. Hence

(β[idV ]γ)
−1 · β[L]β · β[idV ]γ = γ[idV ]β · β[L]β · β[idV ]γ

= γ[idV ]β · β[L ◦ idV ]γ

= γ[idV ◦ L ◦ idV ]γ

= γ[L]γ.

In the second and third equality, we used the first item of Theorem 10.33.

Two square matrices A ∈ Fn×n and B ∈ Fn×n are called similar if there exists an invert-
ible matrix Q ∈ Fn×n such that A = Q−1 · B ·Q. Hence Lemma 11.10 can be rephrased
in words as follows: the effect of choosing a different ordered basis of V is that the
matrix representing L is replaced by a similar matrix. It turns out that this lemma also
explains why it does not matter which ordered basis one chooses when computing the
eigenvalues of a linear map. In fact, we have the following:

Theorem 11.11

Let F be a field, V a vector space over F of dimension n, and L : V → V a linear map.
Further let β and γ be two ordered bases of V. Then the characteristic polynomials
of β[L]β and γ[L]γ are identical.

Proof. For convenience, let us write Q = β[idV ]γ. Using Lemma 11.10, we see that:

p
γ[L]γ(Z) = det(γ[L]γ − Z · In)

= det(Q−1 · β[L]β ·Q− Z · In)

= det(Q−1 · β[L]β ·Q− Z ·Q−1 ·Q)

= det(Q−1 · β[L]β ·Q− Z ·Q−1 · In ·Q)

= det(Q−1 · (β[L]β − Z · In) ·Q).

At this point Theorem 8.23 comes in handy. Using this theorem, we can namely continue
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as follows:

p
γ[L]γ(Z) = det(Q−1 · (β[L]β − Z · In) ·Q)

= det(Q−1) · det(β[L]β − Z · In) · det(Q)

= det(Q−1) · det(Q) · det(β[L]β − Z · In)

= det(Q)−1 · det(Q) · det(β[L]β − Z · In)

= 1 · det(β[L]β − Z · In)

= det(β[L]β − Z · In)

= p
β[L]β(Z).

This is exactly what we wanted to show.

Corollary 11.12

With the same notation as before, we have det β[L]β = det γ[L]γ.

Proof. This follows by putting Z = 0 in the characteristic polynomials p
β[L]β(Z) and

p
γ[L]γ(Z).

We can now define the characteristic polynomial of a linear map L : V → V as long as
V is a finite dimensional vector space.

Definition 11.13

Let F be a field, V a vector space over F of finite dimension n, and L : V → V a linear
map. Then the characteristic polynomial is defined to be that polynomial pL(Z) =
det(β[L]β − Z · In) ∈ F[Z], where β is some ordered basis of V.

The reason this definition makes sense, is that by Theorem 11.11, the choice of the or-
dered basis β does not matter: a different choice will not change the corresponding
characteristic polynomial. In a similar way, based on Corollary 11.12, one can define the
determinant of such a linear map: det L = det β[L]β.
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Example 11.14

As an example, we will consider a linear map, similar to the linear map D : C[Z] → C[Z]
from Example 10.15. However, since C[Z] is an infinitely dimensional vector space, we will
modify the domain and codomain of the map a bit. More precisely, let V be the complex
vector space of polynomials of degree at most three. Then we can define D̃ : V → V as
p(Z) 7→ p(Z)′.

Question: What is the characteristic polynomial pD̃(λ) of the linear map D̃?

Answer: Let us choose the ordered basis β = (1, Z, Z2, Z3) of V. Since D̃(1) = 0, D̃(Z) =

1, D̃(Z2) = 2Z and D̃(Z3) = 3Z2, we see that

β[D̃]β =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 and therefore β[D̃]β − Z · I4 =


−Z 1 0 0

0 −Z 2 0
0 0 −Z 3
0 0 0 −Z

 .

We see that β[D̃]β−Z · I4 is an upper triangular matrix (see Definition 8.7). This means that its
determinant is simply the product of the elements on its diagonal, see Theorem 8.8. Therefore
the characteristic polynomial of D̃ is pD̃(Z) = (−Z)4 = Z4.

11.2 Eigenspaces

So far, we have focused mainly on how to find the eigenvalues of a matrix and a lin-
ear map. In this section, we will focus on finding all possible eigenvectors for a given
eigenvalue.

Theorem 11.15

Let F be a field, V a vector space over F of finite dimension n, and L : V → V a
linear map. Suppose that λ ∈ F is an eigenvalue of L. Then the set

Eλ = {v ∈ V | L(v) = λ · v}

is a subspace of V.
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Proof. Let u, v ∈ Eλ and c ∈ F. According to Lemma 9.32, we can conclude that Eλ is a
subspace of V, if we can show that u + c · v ∈ Eλ. Now note that

L(u + c · v) = L(u) + c · L(v) = λ · u + c · λ · v = λ · (u + c · v).

Hence indeed u + c · v ∈ Eλ, which is what we needed to show.

For square matrices, this theorem has a direct consequence.

Corollary 11.16

Let F be a field and A ∈ Fn×n a square matrix. Suppose that λ ∈ F is an eigenvalue
of A. Then the set Eλ = {v ∈ V | A · v = λ · v} is a subspace of Fn.

Proof. This follows from Theorem 11.15 by applying it to the linear map LA : Fn → Fn,
v 7→ A · v.

For a given linear map L : V → V for a finite dimensional vector space V and an
eigenvalue λ of L, the subspace Eλ is called the eigenspace corresponding to the eigenvalue
λ of the linear map L. Similarly, for a given square matrix A ∈ Fn×n, the subspace Eλ is
called the eigenspace corresponding to the eigenvalue λ of the matrix A.

Now that we know that the set of all eigenvectors of a given eigenvalue λ together with
the zero vector, forms a subspace Eλ, we can describe all possible eigenvectors for a
given eigenvalue by giving a basis of this subspace Eλ. Fortunately, this turns out to
be yet another application of the theory of systems of linear equations. First of all, we
have:

Lemma 11.17

Let L : V → V be a linear map of vector spaces over a field F and assume that
dim V = n. Suppose that λ ∈ F is an eigenvalue of L. Then Eλ = ker(L− λ · idV).
Similarly, if A ∈ Fn×n is a matrix and λ ∈ F is an eigenvalue of A, then Eλ =
ker(A− λ · In).
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Proof. By definition, we have v ∈ Eλ if and only if L(v) = λ · v. Note that L(v) = λ · v if
and only if (L− λ · idn)(v) = 0, which in turn is equivalent to saying that v ∈ ker(L−
λ · In). The second part of the lemma involving the matrix A can be proved similarly.

As we have observed before, computing vectors in the kernel of some matrix B, is ex-
actly the same as finding solutions to the homogeneous system of linear equations with
coefficient matrix B. Moreover, we already know how to compute a basis for the so-
lution space of a homogeneous system of linear equations using Corollary 9.38 and
Theorem 6.29. Hence, we do not need to develop new tools when computing a basis for
the eigenspace Eλ of a matrix. Also when dealing with the similar problem for linear
maps, we do not need any new tools: Theorem 10.39 implies that we can compute the
kernel of a linear map L : V → V by computing the kernel of a matrix β[L]β represent-
ing the linear map, where β is an ordered basis of V. This settles the computation of
eigenvectors completely. Let us illustrate this in two examples.

Example 11.18

First, let us consider the matrix

A =

[
0 −1
1 0

]
∈ C2×2.

We have encountered this matrix before in Example 11.8, but there is one important differ-
ence: in this example we work over the complex numbers C. This was indicated by intro-
ducing the matrix as an element in C2×2, rather than as element of R2×2. First of all, we have,
just as in Example 11.8, that

pA(Z) = det(A− Z · I2) = det
([
−Z −1

1 −Z

])
= Z2 + 1.

Since we are working over the field C, the polynomial Z2 + 1 has two roots namely i and −i.

Question: Find a basis for the eigenspace Ei.

Answer: We know from Lemma 11.17 that Ei = ker(A− i · I2). We have

A− i · I2 =

[
−i −1
1 −i

]
.

To compute the kernel of this matrix, we bring it in reduced row echelon form:[
−i −1
1 −i

]
−→

R2 ← R2 − i · R1

[
−i −1
0 0

]
−→

R1 ← i · R1

[
1 −i
0 0

]
.
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This means that v = (v1, v2) ∈ ker(A− i · I2) if and only if v1 = i · v2. Hence:

Ei = ker(A− i · I2) =

{
c ·
[

i
1

]
| c ∈ C

}
.

A basis of Ei is therefore given by {[
i
1

]}
.

This completely answers the question. In a similar way, one can show that a basis of E−i is
given by {[

−i
1

]}
.

Example 11.19

Let us revisit the linear map D̃ : V → V introduced in Example 11.14. In that example V was
the complex vector space of polynomials of degree at most three and D̃ : V → V was defined
by p(Z) 7→ p(Z)′. We have already seen in Example 11.14 that pD̃(Z) = Z4. Hence D̃ has
only one eigenvalue, namely 0.

Question: Compute a basis for the eigenspace E0.

Answer: We know by Lemma 11.17 that E0 = ker(D̃− 0 · idV) = ker D̃. In order to compute
a basis of ker D̃, we first compute the kernel of a matrix β[D̃]β ∈ C4×4 representing D̃. Let us
choose the ordered basis β = (1, Z, Z2, Z3) of V. We have already seen in Example 11.14 that
in that case:

β[D̃]β =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

This matrix is already in echelon form and we can directly see that (v1, v2, v3, v4) ∈ ker β[D̃]β
if and only if v2 = 0 and v3 = 0 and v4 = 0. Therefore,

ker β[D̃]β =

c ·


1
0
0
0

 | c ∈ C

 .
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We see that a basis for ker β[D̃]β is given by


1
0
0
0


 .

The basis vector (1, 0, 0, 0) corresponds to the polynomial 1 · 1 + 0 · Z + 0 · Z2 + 0 · Z3 = 1.
Hence using Theorem 10.39, we see that

E0 = ker D̃ = {c · 1 | c ∈ C} = C

and that a basis of E0 is given by {1}.

Let us finish this section with a theoretical consideration about eigenvectors that will
become very important later on. We start with a definition.

Definition 11.20

Let F be a field, V a finite dimensional vector space and L : V → V be a linear map.
Suppose that λ ∈ F is an eigenvalue of L. Then we define the algebraic multiplicity
am(λ) of the eigenvalue λ to be the multiplicity of λ as root in the characteristic
polynomial pL(Z) of L. Further, we define the geometric multiplicity gm(λ) of the
eigenvalue λ to be the dimension of Eλ.
Similarly for an eigenvalue λ ∈ F of a square matrix A ∈ Fn×n, we define am(λ)
to be the multiplicity of λ as root in the characteristic polynomial pA(Z) of A and
gm(λ) = dim Eλ.

Example 11.21

In Example 11.18, the eigenvalue i is a root of multiplicity 1 in the characteristic polynomial
pA(Z) = Z2 + 1. Hence am(i) = 1. In that example, we also saw that Ei is a vector space of
dimension one. Hence gm(i) = 1.
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Example 11.22

In Example 11.19, the eigenvalue 0 is a root of multiplicity 4 in the characteristic polynomial
pD̃(Z) = Z4. Hence am(0) = 4. In that example, we also saw that E0 is a vector space of
dimension one. Hence gm(0) = 1 in this case.

As the last example shows, the algebraic and the geometric multiplicity of an eigenvalue
need not be the same. We do have the following theorem stating that 1 ≤ gm(λ) ≤
am(λ). A reader willing to accept this statement can continue to the next section.

Theorem 11.23

Let F be a field and λ ∈ F an eigenvalue of a linear map L : V → V, with dim V =
n < ∞, or an eigenvalue of a square matrix A ∈ Fn×n. Then 1 ≤ gm(λ) ≤ am(λ) ≤
n.

Proof. First of all, if λ is an eigenvalue, there by definition exists at least one eigenvector.
Hence gm(λ) = dim Eλ ≥ 1.

Now suppose that λ is an eigenvalue and let us write s = gm(λ) for convenience. We
will prove the theorem in case λ is an eigenvalue of a linear map L : V → V only,
since the case of a matrix A follows by considering the linear map LA : Fn → Fn.
Since dim Eλ = gm(λ) = s, any basis of Eλ contains precisely s vectors. Let us choose
such a basis, say {v1, . . . , vs}. Now choose vectors vs+1, . . . , vn ∈ V such that β =
v1, . . . , vs, vs+1, . . . , vn is an ordered basis of V. Since L(vi) = λ · vi for all i between 1
and s, we have

β[L]β =

[
λ · Is B

0 D

]
,

for some matrices B ∈ Fs×(n−s) and D ∈ F(n−s)×(n−s) and where 0 denotes the (n− s)×
s matrix all of whose coefficients are zero. Then

β[L]β − Z · In =

[
(λ− Z) · Is B

0 D− Z · In−s

]
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and hence

pL(Z) = det(β[L]β − Z · In)

= det
([

(λ− Z) · Is B
0 D− Z · In−s

])
= (λ− Z)s · det(D− Z · In−s).

In the last equality, we used induction on s and developed the determinant in the first
column to prove the induction basis as well as to perform the induction step. Now it is
clear that the multiplicity of λ in pL(Z) is at least s. In other words: am(λ) ≥ s = gm(λ),
which is exactly what we wanted to show. The final inequality am(λ) ≤ n follows, since
am(λ) is the multiplicity of the root λ in the polynomial pL(Z) and deg pL(Z) = n.

11.3 Diagonalization

In this section, we describe when a linear map can be represented by a particularly nice
matrix: a diagonal matrix. In other words: we will describe when a linear map has a
diagonal mapping matrix. To achieve this, we need to be able to choose a particularly
nice ordered basis. Therefore we start with a lemma.

Lemma 11.24

Let F be a field, V a finite dimensional vector space over F and L : V → V a linear
map. Further, suppose that λ1, . . . , λr ∈ F are distinct eigenvalues of L and write
di = gm(λi) for i = 1, . . . , r. If (v(i)

1 , . . . , v(i)
di
) for i = 1, . . . , r are ordered bases of Eλi ,

then the vectors
v(1)

1 , . . . , v(1)
d1

, . . . , v(r)
1 , . . . , v(r)

dr

are linearly independent.

Proof. We will prove the lemma using induction on r.

If r = 1, there is nothing to prove, since we assume that (v(1)
1 , . . . , v(1)

d1
) is an ordered

basis of Eλ1 . Then the vectors v(1)
1 , . . . , v(1)

d1
are certainly linearly independent. Now let

r > 1 and assume as induction hypothesis that the lemma is correct if there are r − 1
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distinct eigenvalues. Suppose that

r

∑
i=1

di

∑
j=1

αi,j · v
(i)
j = 0, (11-2)

for certain αi,j ∈ F. We need to show that αi,j = 0 for all i = 1, . . . , r and j = 1, . . . , di.

Applying the linear map L to this equation and using that L(v(i)
j ) = λi · v

(i)
j , we see that

∑r
i=1 ∑di

j=1 αi,j · λi · v
(i)
j = 0, which can be rewritten as

r

∑
i=1

λi ·
di

∑
j=1

αi,j · v
(i)
j = 0. (11-3)

Multiplying equation (11-2) with λr and subtracting equation (11-3) from the result, the
term corresponding to i = r cancels, while the result still equals 0. In other words:

λr ·
r−1

∑
i=1

di

∑
j=1

αi,j · v
(i)
j −

r−1

∑
i=1

λi ·
di

∑
j=1

αi,j · v
(i)
j = λr ·

r

∑
i=1

di

∑
j=1

αi,j · v
(i)
j −

r

∑
i=1

λi ·
di

∑
j=1

αi,j · v
(i)
j = 0.

Combining the first two sums into one, we obtain:

r−1

∑
i=1

di

∑
j=1

(λr − λi) · αi,j · v
(i)
j =

r−1

∑
i=1

(λr − λi) ·
di

∑
j=1

αi,j · v
(i)
j = 0.

Now we can apply the induction hypothesis and conclude that (λr − λi) · αi,j = 0 for
i = 1, . . . , r− 1 and j = 1, . . . , di. Since all eigenvalues were assumed to be distinct, we
see that λr − λi ̸= 0 for all i between 1 and r − 1. Hence αi,j = 0 for i = 1, . . . , r − 1

and j = 1, . . . , di. Substituting this in equation (11-2), we obtain that ∑dr
j=1 αr,j · v

(r)
j = 0,

but then we may also conclude that αr,j = 0 for j = 1, . . . dr, since we assumed that

(v(r)
1 , . . . , v(r)

dr
) is an ordered basis of Eλr . This completes the induction step. Hence by

the induction principle, we may conclude that the lemma holds for all r.

As we have seen before, in order to be able to represent a linear map L : V → V by a
matrix β[L]β, we need to choose an ordered basis β of V. The vectors in Lemma 11.24
are linearly independent, which is a good start, but may not span the entire space V.
The next lemma clarifies when the eigenvectors span V.
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Lemma 11.25

Let F be a field, V a vector space over F of dimension n, and L : V → V a linear
map. Then the following two items are equivalent:

1. The eigenvectors of L span V.

2. The characteristic polynomial of L is of the form

pL(Z) = (−1)n · (Z− λ1)
m1 · · · (Z− λr)

mr

for certain λ1, . . . , λr ∈ F and positive integers m1, . . . , mr. Moreover, for each
eigenvalue λi its algebraic and geometric multiplicity is the same: am(λi) =
gm(λi) for i = 1, . . . , r.

Proof. To show that the two items are logically equivalent, we first show 1. ⇒ 2 and
afterwards 2. ⇒ 1.

1. ⇒ 2.: assume that the eigenvectors of L span V. Then we can find a basis S of V
consisting of eigenvectors only. Let λ1, . . . , λr ∈ F be the eigenvalues of L and order the
eigenvectors in S such that the eigenvectors with eigenvalue λ1 come first, then those
with eigenvalue λ2, and so on, ending with the eigenvectors in S with eigenvalue λr.
We then have constructed an ordered basis

β = (v(1)
1 , . . . , v(1)

n1 , . . . , v(r)
1 , . . . , v(r)

nr ),

where for i = 1, . . . , r, the vectors v(i)
1 , . . . , v(i)

ni are the eigenvectors in S with eigenvalue
λi.

Now on the one hand, we have n1 + n2 + · · · + nr = n, since the number of vectors
in the ordered basis β is the same as the dimension of V. On the other hand, for all
i, we have ni ≤ gm(λi), since v(i)

1 , . . . , v(i)
ni are linearly independent vectors in Eλi and

dim Eλi = gm(λi). Therefore, we have:

n = n1 + · · ·+ nr

≤ gm(λ1) + · · ·+ gm(λr)

≤ am(λ1) + · · ·+ am(λr)

≤ deg pL(Z)
= n.
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Since we both started and ended with n, all inequalities have to be equalities. This
shows that gm(λi) = am(λi) for all i = 1, . . . , r and that pL(Z) is of the form as stated
in item 2.

2. ⇒ 1.: Now assume that pL(Z) = (−1)n · (Z− λ1)
m1 · · · (Z− λr)mr for certain distinct

λ1, . . . , λr ∈ F and positive integers m1, . . . , mr and that am(λi) = gm(λi) for all i =
1, . . . , r. Note that by definition, we have mi = am(λi), which in turn implies that
mi = gm(λi), since we assume that am(λi) = gm(λi) for all i. We conclude that n =
deg pL(Z) = gm(λ1) + · · ·+ gm(λr). On the other hand, by Lemma 11.24, we can find
precisely gm(λ1) + · · · + gm(λr) linearly independent eigenvectors of L. Combining
these statements, we can conclude that we can find an ordered basis of V consisting
of eigenvectors. In particular, the eigenvectors span V, which is what we wanted to
show.

Now we are ready to show the main result of this section.

Definition 11.26

Let a linear map L : V → V be given, where V is a finite dimensional vector space
over a field F. Then one says that L can be diagonalized, if there exists an ordered
basis β of V such that the corresponding mapping matrix β[L]β is a diagonal matrix.
Likewise, if A ∈ Fn×n is a square matrix, then one says that A can be diagonalized,
if A is similar to a diagonal matrix.

Theorem 11.27

Let V a finite dimensional vector space over a field F. A linear map L : V → V
can be diagonalized if and only if the characteristic polynomial of L is of the form
pL(Z) = (−1)n · (Z− λ1)

m1 · · · (Z− λr)mr for certain λ1, . . . , λr ∈ F, and am(λi) =
gm(λi) for each eigenvalue λi.

Proof. Using Lemma 11.25, it is enough to show that L can be diagonalized if and only
if its eigenvectors span V.

Therefore, first assume that L can be diagonalized. Then there exists an ordered basis
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β of V such that β[L]β is a diagonal matrix. But this implies that each vector in β is an
eigenvector. Hence V can be spanned by eigenvectors.

Conversely, assume that V can be spanned by eigenvectors. Then there exists an ordered
basis β = v1, . . . , vn of V, containing eigenvectors only. The corresponding matrix β[L]β
is a diagonal matrix, with the eigenvalues of v1, . . . , vn on its diagonal.

Corollary 11.28

A matrix A ∈ Fn×n can be diagonalized if and only if the characteristic polynomial
of A is of the form pA(Z) = (−1)n · (Z− λ1)

m1 · · · (Z− λr)mr for certain λ1, . . . , λr ∈
F, and am(λi) = gm(λi) for each eigenvalue λi.

Proof. This follows from Theorem 11.27 by applying it to the linear map LA : Fn →
Fn.

Corollary 11.29

Let V be a finite dimensional complex vector space. A linear map L : V → V,
can be diagonalized if and only if am(λi) = gm(λi) for each eigenvalue λi of L.
Similarly, a complex matrix A ∈ Cn×n is similar to a diagonal matrix if and only if
am(λi) = gm(λi) for each eigenvalue λi of A.

Proof. If the field we work over is C, it follows from Theorem 4.23 that the characteristic
polynomial pL(Z) can be written as a product of its leading term and terms of the form
Z − λ. Hence this condition in Theorem 11.27 is always satisfied if F = C and can
therefore be removed. Theorem 11.27 then implies what we want. The proof of the
corollary in the case of a complex matrix A ∈ Cn×n is similar.
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Example 11.30

Consider the linear map D̃ : V → V introduced in Example 11.14. In that example V was the
complex vector space of polynomials of degree at most three and D̃ : V → V was defined by
p(Z) 7→ p(Z)′.

Question: Can the linear map D̃ be diagonalized?

Answer: From Example 11.14, we see that pD̃(Z) = Z4. Using the notation of Theorem 11.27,
we see that r = 1 and λ1 = 0. Moreover, am(0) = 4, since 0 is a root with multiplicity four of
pD̃(Z). In Example 11.19, we have seen that E0 is a one dimensional vector space with basis
{1}. Hence gm(0) = dim E0 = 1. Since gm(0) < am(0) Theorem 11.27 implies that the linear
map D̃ cannot be diagonalized.

Example 11.31

Consider the matrix

A =

[
0 −1
1 0

]
that we also studied in Example 11.18 and that also occurred in Example 11.8.

Question 1: Can the matrix A be diagonalized when working over the real numbers R? If
yes, compute a matrix Q ∈ R2×2 such that Q−1 ·A ·Q is a diagonal matrix.

Question 2: Can the matrix A be diagonalized when working over the complex numbers C?
If yes, compute a matrix Q ∈ C2×2 such that Q−1 ·A ·Q is a diagonal matrix.

Answer to Question 1: We have computed in Example 11.8, that pA(Z) = Z2 + 1. Since Z2 + 1
has no real roots, it cannot be written in the form as required in Corollary 11.28. Therefore,
the matrix A is not diagonalizable over R.

Answer to Question 2: The characteristic polynomial pA(Z) = Z2 + 1 has two complex roots,
namely i and −i. Furthermore, we have Z2 + 1 = (Z − i) · (Z + i). Hence am(i) = 1 and
am(−i) = 1. Since by Theorem 11.23, we know that 1 ≤ gm(λ) ≤ am(λ) for any eigenvalue
λ, we conclude that gm(i) = am(i) = 1 and gm(−i) = am(−i) = 1. Hence all in Corollary
11.28 are satisfied. We conclude that the given matrix A is diagonalizable over the complex
numbers.
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Now we explicitly compute an invertible matrix Q ∈ C2×2 such that Q−1AQ is a diagonal
matrix. Let us denote by ϵ the standard basis of C2. Then ϵ[LA]ϵ = A. To diagonalize A, we
simply diagonalize the corresponding linear map LA. In order to do that, we need to find an
ordered basis of C2 consisting of eigenvectors. In Example 11.18, we saw that:

Ei has basis
{[

i
1

]}
and E−i has basis

{[
−i
1

]}
.

Hence β = (

[
i
1

]
,
[
−i
1

]
) is an ordered basis of C2 consisting of eigenvectors only. Using

this ordered basis, we find that the mapping matrix β[LA]β is a diagonal matrix with the
eigenvalues of the vectors in the ordered matrix β on its diagonal. Hence

β[LA]β =

[
i 0
0 −i

]
.

To find the matrix Q such that Q−1 ·A ·Q, now observe that

β[LA]β = β[idC2 ]ϵ · ϵ[LA]ϵ · ϵ[idC2 ]β = ϵ[idC2 ]−1
β ·A · ϵ[idC2 ]β.

Hence we can simply choose Q = ϵ[idC2 ]β, the change of coordinate matrix from β-
coordinates to ϵ-coordinates. This matrix just contains the eigenvectors in β as columns.
Hence

Q = ϵ[idC2 ]β =

[
i −i
1 1

]
is the matrix we were looking for. Concretely, we have[

i −i
1 1

]−1

·
[

0 −1
1 0

]
·
[

i −i
1 1

]
=

[
i 0
0 −i

]
.

11.4 Fibonacci numbers revisited

In Example 5.2, more precisely in equation (5-3), we gave an example of a recursively
defined sequence of numbers F1, F2, F3, . . . called the Fibonacci numbers:

Fn =


1 if n = 1,
1 if n = 2,
Fn−1 + Fn−2 if n ≥ 3.

(11-4)
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This recursion can also be expressed using matrices. Indeed, directly from equation
(11-4), one sees that [

Fn
Fn−1

]
=

[
1 1
1 0

]
·
[

Fn−1
Fn−2

]
for all n ≥ 3.

This matrix form makes it possible to find a closed form for the Fibonacci numbers. First
of all, we have the following:

Lemma 11.32

For all n ≥ 2 it holds that:[
Fn

Fn−1

]
=

[
1 1
1 0

]n−2

·
[

1
1

]
.

Proof. This can be shown using induction on n with base case n = 2. The details are left
to the reader.

To find a closed formula for Fn, it is enough to find a closed formula for powers of the
matrix

P =

[
1 1
1 0

]
.

We will diagonalize P to do this. The point is that if a matrix can be diagonalized, it is
possible to find a closed formula for its powers:

Lemma 11.33

Let F be a field and A ∈ Fn×n a square matrix. Let Q ∈ Fn×n be an invertible
matrix such that Q ·A ·Q−1 is a diagonal matrix D with the elements d1, . . . , dn on
its diagonal. Then

An = Q−1 ·Dn ·Q.

Moreover, Dn is a diagonal matrix with the elements dn
1 , . . . , dn

n on its diagonal.
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Proof. With induction on n one can show that (Q ·A ·Q−1)n = Q ·An ·Q−1 for all n ≥ 1.
Since Q ·A ·Q−1 = D, the result then follows. Also showing that Dn is a diagonal matrix
with the elements dn

1 , . . . , dn
n on its diagonal, can readily be shown by induction on n.

The point of this lemma is that it makes the computation of powers of a matrix relatively
easy if the matrix is diagonalizable. Now let us return to the matrix P. The characteristic
polynomial of P is

pP(Z) = det
([

1− Z 1
1 −Z

])
= Z2 − Z− 1.

Hence the eigenvalues of P are λ1 = 1+
√

5
2 and λ2 = 1−

√
5

2 . This already means that the
matrix P is diagonalizable. To find the desired change of coordinate matrix, we need to
calculate a basis of the eigenspaces. To calculate a basis of the eigenspace Eλ1 , note that

P− λ1 · I2 =

[
1−
√

5
2 1
1 −1−

√
5

2

]
−→

R2 ← R2 − λ2 · R1

[
1−
√

5
2 1
0 0

]
Hence we see that a basis of Eλ1 is given by{[

−1
1−
√

5
2

]}
.

Similarly, one can show that a basis of Eλ2 is given by{[
−1

1+
√

5
2

]}
.

Hence [
1+
√

5
2 0
0 1−

√
5

2

]
=

[
−1 −1

1−
√

5
2

1+
√

5
2

]−1

·
[

1 1
1 0

]
·
[
−1 −1

1−
√

5
2

1+
√

5
2

]
,

which implies that

P =

[
1 1
1 0

]
=

[
−1 −1

1−
√

5
2

1+
√

5
2

]
·
[

1+
√

5
2 0
0 1−

√
5

2

]
·
[
−1 −1

1−
√

5
2

1+
√

5
2

]−1

Now applying Lemma 11.33 in order to compute powers of P and Lemma 11.32, we see
that[

Fn
Fn−1

]
=

[
1 1
1 0

]n−2

·
[

1
1

]

=

[
−1 −1

1−
√

5
2

1+
√

5
2

]
·


(

1+
√

5
2

)n−2
0

0
(

1−
√

5
2

)n−2

 · [ −1 −1
1−
√

5
2

1+
√

5
2

]−1

·
[

1
1

]
.
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After working out all the matrix products on the right-hand side, one obtains that

[
Fn

Fn−1

]
=

 1√
5
·
(

1+
√

5
2

)n
− 1√

5
·
(

1−
√

5
2

)n

1√
5
·
(

1+
√

5
2

)n−1
− 1√

5
·
(

1−
√

5
2

)n−1

 ,

which explains where equation (5-4) came from.

In this section we focused on the Fibonacci numbers, but very similar techniques can be
used to find closed formulas for other recursively defined sequences of numbers, but
we will not pursue this further here.

11.5 Extra: What if diagonalization is not possible?

This section is not required reading and can be skipped. It is meant as extra material for
a student who has the time and motivation for it.

As we have seen in the previous section, diagonalization of a linear map L : V → V is
not always possible. In this section, we discuss the well-known Jordan normal form. The
key for diagonalization was to study the eigenspace Eλ = ker(L− λ · idV) for a given
eigenvalue λ. We defined gm(λ) = dim Eλ and have seen that in order to be able to
diagonalize a matrix or linear map, it was important that the condition gm(λ) = am(λ)
is met. It turns out that if gm(λ) < am(λ), one needs to study the kernels of powers of
the linear map L− λ · idV . Here the i-th power f i of a function f : V → V should be
understood as the i-fold composite of f with itself (so f 1 = f , f 2 = f ◦ f , etcetera).

Lemma 11.34

Let F be a field, V an n-dimensional vector space over F and L : V → V a linear
map. Further assume that λ ∈ F is an eigenvalue of L. Then

ker(L− λ · idV) ⊆ ker((L− λ · idV)
2) ⊆ ker((L− λ · idV)

3) ⊆ . . .

Moreover,

1. if ker((L− λ · idV)
i) = ker((L− λ · idV)

i+1) for some positive integer i, then
ker((L− λ · idV)

i) = ker((L− λ · idV)
m) for all m ≥ i, and

2. ker((L− λ · idV)
n) = ker((L− λ · idV)

n+1).
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Proof. It is clear that for all i, the kernel of (L− λ · idV)
i+1 is a subspace of the kernel of

(L− λ · idV)
i. If equality holds for some i, then by the rank-nullity theorem for linear

maps, see Corollary 10.40, we also obtain that the images of the linear maps (L − λ ·
idV)

i+1 and (L− λ · idV)
i are the same. But then also

im(L− λ · idV)
i+2 = (L− λ · idV)

i+2(V)

= (L− λ · idV)((L− λ · idV)
i+1(V))

= (L− λ · idV)((L− λ · idV)
i(V))

= (L− λ · idV)
i+1(V)

= im(L− λ · idV)
i+1

= im(L− λ · idV)
i.

But then, again using the rank-nullity theorem for linear maps, we see that the kernel
of (L− λ · idV)

i+2 is equal to the kernel of (L− λ · idV)
i. Using induction on m, one can

similarly show that for any m ≥ i the kernel of (L− λ · idV)
m is equal to the kernel of

(L− λ · idV)
i.

Now consider the sequence of subspaces:

ker(L− λ · idV) ⊆ ker((L− λ · idV)
2) ⊆ ker((L− λ · idV)

3) ⊆ . . .

By the previous, we know that if equality holds at some point in the sequence, then
equalities will hold from then on. Therefore there exists e ≥ 1 such that

ker(L− λ · idV) ⊊ · · · ⊊ ker((L− λ · idV)
e) = ker((L− λ · idV)

e+1) = . . .

For every strict inclusion, the dimension of the subspace increases by at least one. Since
dim V = n and dim ker(L − λ · idV) = dim Eλ ≥ 1, this can occur at most n times.
Hence e ≤ n. In particular ker((L− λ · idV)

n) = ker((L− λ · idV)
n+1).

Theorem 11.35

Let F be a field, V an n-dimensional vector space over F and L : V → V a linear map.
Further assume that λ ∈ F is an eigenvalue of L. Further, write U = im(L−λ · idV)

n

and W = ker(L− λ · idV)
n. Then

1. L(U) ⊆ U and L(W) ⊆W.

2. dim U + dim W = dim V and U ∩W = {0}.

3. Any vector in V can be written as the sum of a vector in U and a vector in W.
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Proof. We have seen in the third item of Lemma 11.34 that W = ker(L − λ · idV)
n =

ker(L − λ · idV)
n+1. Now choose w ∈ W. Then also (L − λ · idV)(w) ∈ W, since

(L− λ · idV)
n((L− λ · idV)(w)) = (L− λ · idV)((L− λ · idV)

n(w)) = (L− λ · idV)(0) =
0. Hence L(w) − λ ·w ∈ W, which implies that L(w) ∈ W. We may conclude that
L(W) ⊆W. Similarly, if u ∈ U, then (L− λ · idV)(u) ∈ U, since if u = (L− λ · idV)

n(v)
for some v ∈ V, then (L − λ · idV)(u) = (L − λ · idV)((L − λ · idV)

n(v)) = (L − λ ·
idV)

n((L− λ · idV)(v)) ∈ U. Hence L(u)− λ · u ∈ U, which implies that L(u) ∈ U. We
may conclude that L(U) ⊆ U.

The rank-nullity theorem for linear maps applied to the linear map (L − λ · idV)
n :

V → V immediately implies that dim U + dim W = dim V. Now, we prove that U ∩
W = {0}. Let u ∈ U ∩W. We wish to show that u = 0. First of all, since u ∈ U,
there exists v ∈ V such that u = (L − λ · idV)

n(v). Second, since u ∈ W, we have
(L− λ · idV)

n(u) = 0. Combining these two, we see that

(L− λ · idV)
2n(v) = (L− λ · idV)

n(u) = 0.

In other words, v ∈ ker(L − λ · idV)
2n. However, Lemma 11.34 implies that ker(L −

λ · idV)
2n = ker(L− λ · idV)

n and hence v ∈ ker(L− λ · idV)
n. But then u = (L− λ ·

idV)
n(v) = 0, which is what we wanted to show.

Given an ordered basis βU = (u1, . . . , ur) of U and an ordered basis βW = (w1, . . . , ws)
of W, joining the two together yields an ordered basis β = (βU, βW) of V. Indeed, the
fact that U∩W = {0} can be used to show that the vectors in β are linearly independent,
while the identity dim U + dim W = dim V implies that β contains exactly n vectors.
Now given an arbitrarily chosen v ∈ V, we can write v in exactly one way as a linear
combination of the ui and the wj, say v = ∑i αi · ui + ∑j β j ·wj. Now observing that
∑i αi · ui ∈ U and ∑j β j ·wj ∈W, the last item in the theorem follows.

Corollary 11.36

Using the same notation as in Theorem 11.35, write pL(Z) = (λ − Z)am(λ) · q(Z)
for a suitably chosen q(Z) ∈ F[Z]. Denote by L|W : W → W, respectively L|U :
U → U, the linear maps obtained by restricting the domain and codomain of L to U,
respectively W. Then pL(Z) = pL|U(Z) · pL|W (Z) and λ is not a root of pL|U(Z).

Proof. Given an ordered basis βU = (u1, . . . , ur) of U and an ordered basis βW =
(w1, . . . , ws) of W, we have already seen in the proof of Theorem 11.35, that β = (βU, βW)
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is an ordered basis of V. Since we know that L(U) ⊆ U and L(W) ⊆ W, the matrix
β[L]β ∈ Fn×n will have the form

β[L]β =

[
βU [L]βU 0

0 βW [L]βW

]
. (11-5)

This implies that pL(Z) = pL|U(Z) · pL|W (Z). Now observe that λ cannot be a root of
pL|U(Z). Indeed, if this would be the case, then there would exist a nonzero u ∈ U such
that L|U(u) = λ · u. Since by definition of the linear map L|U, we have L|U(u) = L(u),
this would imply that (L− λ · idV)(u) = 0. But then u ∈ ker(L− λ · idV), implying that
u ∈ ker(L− λ · idV)

n = W. Since we have seen that U ∩W = {0}, we would obtain
that u = 0, contrary to our assumption.

Now let us return to what we are trying to achieve: to find a matrix representing L that
is as simple as possible. Equation (11-5) is an important step on the way. Indeed, we
have reduced the problem into two simpler ones: finding a simple matrix representing
L|U and one representing L|W . Moreover, λ is not a root of the characteristic polynomial
of L|U, so to deal with the eigenvalue λ of L, we only have to continue with the study
of the linear map L|W . Let us first get an intuitive idea of what may be going on. If
am(λ) = gm(λ), we can find an ordered basis βW of W consisting of eigenvectors for L
only, all having λ as eigenvalue. Then

βW [L]βW = [λ · Is] ,

where s = dim W. What we did in the previous section is essentially to repeat this
procedure for another eigenvalue and split the matrix representing L|U further up in
smaller blocks. As long as the algebraic and geometric multiplicity of the eigenvalues is
always the same, we end up with diagonalizing the entire matrix.

So what happens if am(λ) > gm(λ)? We can still find an ordered basis βW of W contain-
ing the eigenvectors with eigenvalue λ, but we also need some more vectors in βW that
are not eigenvectors. To put this in a different way: if am(λ) = gm(λ), then W = Eλ, so
that ker(L− λ · idV) = ker((L− λ · idV)

n). However, if am(λ) > gm(λ), then W con-
tains Eλ, but is not equal to it. Then apparently ker(L− λ · idV) ⊊ ker((L− λ · idV)

n).
This implies in particular that ker(L−λ · idV) ⊊ ker((L−λ · idV)

2) using Lemma 11.34.
If we choose a vector w ∈ ker((L − λ · idV)

2) \ ker(L − λ · idV), it has the nice prop-
erty that L(w) − λ · w = (L − λ · idV)(w) ∈ ker(L − λ · idV) = Eλ. Let us define
v = L(w)− λ ·w. Further, we see that: L(v) = λ · v, since v ∈ Eλ, and L(w) = λ ·w+ v,
by the way we defined v. So if we only consider the effect of L on the two-dimensional
subspace of V spanned by v and w, which has ordered basis v, w, we can represent L
by the matrix [

λ 1
0 λ

]
.
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This gives a first idea of what to expect more in general for a matrix representing L|W .
In particular, it motivates the following:

Definition 11.37

Let F be a field and λ ∈ F. A Jordan block of size e is a matrix Je(λ) ∈ Fe×e of the
form

Je(λ) =


λ 1 0

. . . . . .
. . . 1

0 λ

 .

Lemma 11.38

Let L : V → V be a linear map, dim V = n and λ an eigenvalue of L. Further, let
W = ker((L − λ · idV)

n). Then there exists an ordered basis of W such that L|W :
W →W, the restriction of L to W has a mapping matrix D(λ) of the form

D(λ) =

 Je1(λ) 0
. . .

0 Jes(λ)


for a certain positive integer s and certain positive integers e1, . . . , es.

Proof. It will be convenient to write Wi = ker((L− λ · idV)
i) and ri = dim Wi. Note that

W1 = Eλ. Now let e be the largest exponent such that We−1 ⊊ We. Then We = W and
r1 < r2 < · · · < re = dim W. Let β = (w1, . . . , wre) be an ordered basis of W with the
additional property that (w1, . . . , wri) is an ordered basis of Wi for all i.

We now gradually construct another ordered basis, say γ, of W. First of all, we add to
γ the vectors wi for any i between re−1 + 1 and re. By construction, for any i between
re−1 + 1 and re the vector wi lies in We, but not in We−1. Now, consider the vectors
wi,j = (L− λ · idV)

j(wi), for j = 0, . . . , e− 1. Note that the vector wi,j lies in We−j, but
not in We−j−1. Also note that wi = wi,0 for any i between re−1 + 1 and re.

First we claim that vectors wi,e−1 are linearly independent. Indeed if ∑re
i=re−1+1 αi ·
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wi,e−1 = 0, then ∑re
i=re−1+1 αi ·wi ∈We−1 and hence in the span of the vectors w1, . . . , wre−1 .

But since the vectors w1, . . . , wre are linearly independent, this implies that αi for all
i = re−1 + 1, . . . , re. Next we claim that the vectors wi,j, with i = re−1 + 1, . . . , re

and j = 0, . . . , e − 1 are linearly independent. If ∑i ∑e−1
j=0 αi,j ·wi,j = 0, then applying

(L − λ · idV)
e−1 yields the equation ∑i αi,0 ·wi,e−1 = 0. Hence αi,0 = 0 for all i. Now

applying lower and lower powers of (L− λ · idV) to the equation ∑i ∑e−1
j=0 αi,j ·wi,j = 0,

one obtains inductively that αi,j = 0 for all i and j.

Therefore, it makes sense to include all the vectors wi,j in γ. More precisely, we now
set γ = (wre−1+1,e−1, . . . , wre−1+1,0, . . . , wre,e−1, . . . , wre,0). We have (L− λ · idV)(wi,j) =
wi,j+1 for j = 0, . . . , e− 2 and (L− λ · idV)(wi,e−1) = 0. This implies that

L(wi,j) = λ ·wi,j + wi,j+1 for j = 0, . . . , e− 2 and L(wi,e−1) = λ ·wi,e−1.

We have now in fact shown that the restriction of L to the subspace spanned by the wi,j
can be represented by a block diagonal matrix with re − re−1 many matrices Je(λ) on its
diagonal.

For any j between 0 and e− 1, the vectors wi,j, with i varying from re−1 + 1 to re, span
a subspace of We−j. If for all j, this subspace is equal to We−j, then γ is an ordered basis
of W, giving rise to a matrix representing W in Jordan normal form, as we have seen.
Otherwise, let j̃ be the smallest value of j such that this subspace is not all of We−j and
define ẽ = e− j̃. Then let w̃1, . . . , w̃d ∈Wẽ be vectors such that

(w1, . . . , wrẽ−1 , w̃1, . . . , w̃d, wre−1+1, j̃, . . . , wre, j̃)

is an ordered basis of Wẽ. Now we proceed similarly as in the start, defining vectors
w̃i,j = (L− λ · idV)

j(w̃i), which we add to γ and which will give rise to Jordan blocks
of size ẽ in the matrix representing L.

Continuing in this way, we end up with an ordered basis of γ giving rise to a matrix in
Jordan normal form that represents the restriction of L to W.
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Theorem 11.39

Let F be a field, V a finite dimensional vector space, and L : V → V. Suppose
that there exist distinct λ1, . . . , λr ∈ F and positive integers m1, . . . , mr such that
pL(Z) = (−1)n · (Z− λ1)

m1 · · · (Z− λr)mr . Then the linear map can be represented
by a matrix of the form  D(λ1) 0

. . .
0 D(λr)

 ,

where each matrix D(λi) ∈ Fmi×mi is of the form as in Lemma 11.38.

Proof. We prove the theorem with induction of the number of eigenvalues. We use the
same notation for U and W as in Theorem 11.35. If r = 1, W = V and hence L|W = L.
Hence the result follows from Lemma 11.38. Now let r > 1. Let λ = λr ∈ F be an
eigenvalue of L. From Lemma 11.38, we conclude that we can choose an ordered basis
for W such that L|W is represented by a block diagonal matrix with Jordan blocks Jei(λr)
on its diagonal. Further, from Corollary 11.36, λr is not an eigenvalue of L|U, while the
characteristic polynomial of L|U is a divisor of PL(Z). Hence the induction hypothesis
applies.

The matrix given in Theorem 11.39 is said to be the Jordan normal form of the matrix A.

Corollary 11.40

Let A ∈ Cn×n be a complex matrix. Then A is similar to a matrix in Jordan normal
form.

Proof. If we work over the complex numbers, it follows from Theorem 4.23 that pA(Z)
can be written as a product of its leading term, which is (−1)n, and terms of the form
Z− λ. Hence Theorem 11.39 applies.
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Note 12

Systems of linear ordinary differential
equations of degree one with constant
coefficients

In this chapter we will investigate some families of differential equations. Differential
equations are used to model processes occurring in nature. They occur in almost every
area of applied exact sciences, like (quantum) mechanics, (bio)chemistry, dynamics of
biological systems, construction engineering, the study of electrical components and
circuits, and many more. The theory of differential equations is vast and we will in this
book only take a first look at some special cases. Before starting with that, let us fix a
few conventions and notations that we will use in the remainder of this chapter.

As we have seen, in general a function f : A → B is a map between two sets. In this
chapter, we will always assume that the domain of the function is the set of real numbers
R. If the codomain B is equal to R, we call such a function a real-valued function. If
B = C, we call such a function a complex-valued function. Real- and complex-valued
functions occur in many places in mathematics, especially in analysis. The techniques
and tools from linear algebra that we have discussed so far in previous chapters, can
be used in analysis as well. More precisely, we will see how tools from linear algebra
can be used to solve specific types of differential equations. Without being too formal,
one can think of a differential equation as a way to find real-valued or complex-valued
functions with additional properties involving the derivatives of that function. We will
assume that the reader is familiar with the derivative of a real-valued function. Given a
function f : R→ R, we denote by f ′, the derivative of f , provided it exists. The function
f ′ : R→ R is again a real-valued function and as such one can attempt to compute the
derivative of f ′. If it exists, it is typically denoted by f ′′ or by f (2). Similarly, one can



Note 12 278

recursively define for n ≥ 3, the function f (n) : R → R to be the derivative of f (n−1),
provided it exists. We have seen this notation in Example 9.34 as well. It is customary
to write f (0) = f and f (1) = f ′. In the theory of real- and complex-valued functions, it
is quite common to write down a function as f (t), rather than writing f : R → R (for
real-valued functions) or f : R → C (for complex-valued functions). In the remainder
of this section we will also often do this.

We can now explain in broad terms what we mean by an n-th order ordinary differential
equation (abbreviated: ODE).

Definition 12.1

Let n be a natural number. An n-th order ODE is an equation of the form

F( f (n)(t), . . . , f ′(t), f (t), t) = 0,

where F is a function taking n + 2 variables as input.

A solution of such an ODE is then a real-valued function f (t) such that

F( f (n)(t), . . . , f ′(t), f (t), t) = 0

for all t ∈ R. There are many variations and more refined definitions. For example in
some cases, one only needs that F( f (n)(t), . . . , f ′(t), f (t), t) = 0 for all t in a subset of R.
However, all we need at this point is an intuitive understanding of what an ODE is and
therefore we will not go into more depth here. As a first small example: the function
f (t) = et is a solution to the ODE f ′(t)− f (t) = 0, because it holds that (et)′ = et. We
will see more examples later on.

One is often primarily interested in real-valued functions as solution to an ODE, but
sometimes it is convenient to look for complex-valued solutions as well. For us the
main reason will be to use such complex-valued solutions to find real-valued solutions
of an ODE. Let us therefore explain how to compute the derivative of complex-valued
functions. Given a complex-valued function f : R → C, one can for any t ∈ R, write
f (t) = f1(t)+ i f2(t), where f1(t) = Re( f (t)) is the real part of f (t) and f2(t) = Im( f (t))
is the imaginary part of f (t). In this way, any complex-valued function f : R → C,
gives rise to two real valued-functions Re( f ) : R → R defined as t 7→ Re( f (t)) and
Im( f ) : R → R defines as t 7→ Im( f (t)). Conversely, given two real-valued functions
f1 : R→ R and f2 : R→ R, we can define a complex-valued function f = f1 + i · f2 as
t 7→ f1(t) + i · f2(t). If the derivatives of f1 and f2 exist, we will define the derivative of
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f to be the function f ′ = f ′1 + i · f ′2. Similarly, we can define for any nonnegative integer

n, the n-th derivative f (n) = f (n)1 + i · f (n)2 , provided that both f (n)1 and f (n)2 exist. With
these conventions in place, we can therefore also talk about complex-valued functions
as solutions of an ODE. We will see examples of such solutions later on.

After this brief introductory sketch of what an ODE is and what a solution to an ODE
is, let us look at some particular cases and examples in the following sections.

12.1 Linear first-order ODEs

According to Definition 12.1, a first-order ODE gives a relation between a function f (t)
and its derivative f ′(t). For example f ′(t) = f (t) is a first-order ODE, but also a more
complicated expression like

sin( f (t) f ′(t)) = f ′(t)2 + et

is a first-order ODE. To bring these examples in the form of Definition 12.1, we just
rewrite the expressions and make the righthand side zero. For example, the first ex-
pression can be written as f ′(t) − f (t) = 0, while the second example can be written
as sin( f (t) f ′(t))− f ′(t)2 − et = 0. Let us consider a couple of examples of first-order
ODEs.

Example 12.2

Investigate whether or not the function f (t) = e2t is a solution to one of the following ODEs:

1. f ′(t)− 2 f (t) = 0

2. f ′(t)2 − 4 f (t) = 0

3. ln( f ′(t))− ln( f (t)) = ln(2)

Answer:

1. Using the chain rule we find that f ′(t) = (e2t)′ = e2t(2t)′ = e2t2 = 2e2t. Therefore it
holds that

f ′(t)− 2 f (t) = 2e2t − 2e2t = 0.

We can therefore conclude that the function f (t) = e2t is a solution to the ODE f ′(t) =
2 f (t).
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2. We have seen that f ′(t) = 2e2t. Therefore it holds that

f ′(t)2 − 4 f (t) = (2e2t)2 − 4e2t = 4(e2t)2 − 4e2t = 4e4t − 4e2t ̸= 0.

Therefore the function f (t) = e2t is not a solution to the ODE f ′(t)2 − 4 f (t) = 0

3. If f (t) = e2t, we find that

ln( f ′(t))− ln( f (t)) = ln(2e2t)− ln(e2t) = ln(2) + ln(e2t)− ln(e2t) = ln(2),

so the function f (t) = e2t is a solution to the ODE ln( f ′(t))− ln( f (t)) = ln(2).

Let us take a look again at the ODE f ′(t) = f (t). We mentioned before that the function
f (t) = et is a solution to this ODE. However, it is not the only one. For example the
functions f (t) = 2et and f (t) = −5et both also satisfy that f ′(t) = f (t). In fact any
function of the form f (t) = c · et, with c ∈ R a constant, is a solution to the ODE
f ′(t) = f (t).

One can show that in fact any solution to the ODE f ′(t) = f (t) is of the form f (t) = c · et.
Such a description of all possible solutions to an ODE is called its general solution. The
term general solution was used in a similar way when describing solutions to systems
of linear equations. Using this terminology we can say that the general solution to the
ODE f ′(t) = f (t) is given by f (t) = c · et, with c ∈ R.

It can be difficult to find an explicit expression for the general solution to an ODE. How-
ever, for some classes of ODEs, it is possible. We will now look at one such class. An
ODE of the form

f ′(t) = a(t) f (t) + q(t), (12-1)

with a(t) and q(t) functions in the variable t, is called a linear first-order ODE. The func-
tion q(t) is also called the forcing function of this ODE. For example the ODE f ′(t) = f (t)
is a linear first-order ODE. More precisely, by choosing a : R → R to be the function
defined by t 7→ 1 and q : R → R to be the function defined by t 7→ 0, equation (12-1)
simplifies to the equation f ′(t) = f (t).

The ODE from equation (12-1) is called homogeneous if the forcing function q(t) is the
zero function and inhomogeneous otherwise.

It turns out that one can give a formula for the general solution to a linear first-order
ODE. In this formula we will need a bit of notation. We will by P(t) denote a primitive
function (also known as an antiderivative) of the function a(t), that is to say, a function
satisfying P′(t) = a(t). We will assume in the remainder of this subsection that the
function a(t) in fact has such a primitive function. We will also need to assume that the
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function eP(t)q(t) has a primitive function. One can show that these assumptions are
true if for example both function a(t) and q(t) are differentiable. If this is the case, we
have the following result.

Theorem 12.3

The general solution to the ODE f ′(t) = a(t) f (t) + q(t) is given by

f (t) = eP(t)
∫

e−P(t)q(t)dt.

Proof. Recall that P′(t) = a(t). Using first the product rule and then the chain rule, we
find that(

e−P(t) f (t)
)′

=
(

e−P(t)
)′

f (t) + e−P(t) f ′(t) = −e−P(t)a(t) f (t) + e−P(t) f ′(t).

Therefore the following holds:

f ′(t) = a(t) f (t) + q(t)⇔ e−P(t) f ′(t)− e−P(t)a(t) f (t) = e−P(t)q(t)

⇔
(

e−P(t) f (t)
)′

= e−P(t)q(t)

⇔ e−P(t) f (t) =
∫

e−P(t)q(t)dt

⇔ f (t) = eP(t)
∫

e−P(t)q(t)dt.

When computing the integral in Theorem 12.3, one should not forget the integration
constant, since this constant is needed when finding the general solution. Let us look at
some examples.

Example 12.4

Compute the general solution to the following ODEs:

1. f ′(t) = f (t)

2. f ′(t) = − sin(t) f (t) + sin(t)
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3. f ′(t) = −t−1 f (t) + 1, with t > 0

Answer:

1. Rewriting f ′(t) = f (t) as f ′(t) − f (t) = 0, we see that we can apply Theorem 12.3,
using a(t) = 1 and q(t) = 0. A primitive function of a(t) = 1 is given by for example
P(t) = t. Then we get that the general solution is given by

f (t) = et
∫

e−t0 dt = et
∫

0 dt = etc = cet.

This agrees with the general solution we found before for this ODE.

2. We can use Theorem 12.3 with a(t) = − sin(t) and q(t) = sin(t). We can choose
P(t) = cos(t) and we therefore find that the desired general solution is given by

f (t) = ecos(t)
∫

e− cos(t) sin(t)dt = ecos(t)
(

e− cos(t) + c
)
= 1 + cecos(t).

3. Theorem 12.3 applies with a(t) = −t−1 = −1/t and q(t) = 1. Since t > 0, this
means that we can choose P(t) = − ln(t). The general solution to the ODE f ′(t) =

−t−1 f (t) + 1 then becomes

f (t) = e− ln(t)
∫

eln(t)dt = (1/eln(t))
∫

tdt =
1
t

(
1
2

t2 + c
)
=

t
2
+

c
t
.

One important special case of Theorem 12.3 is when the function a is a constant function,
say a(t) = a0 for all t. In this case, Theorem 12.3 simplifies to the following statement.

Corollary 12.5

Let a0 ∈ R and q(t) be a real-valued, differentiable function. Then the ODE f ′(t) =
a0 f (t) + q(t) has general solution f (t) = ea0t ∫ e−a0tq(t)dt. More concretely, if Q(t)
is a primitive function of e−a0tq(t), then the general solution can be written as f (t) =
c · ea0t + ea0tQ(t), where c ∈ R is arbitrary.

As said before, ODEs are used to model processes occurring in nature. The general so-
lution of an ODE describes all possible behaviors of the process. In order to find out
which one of the possibilities is the right one in a particular situation, one needs more
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information, that one usually can obtain by performing measurements. One possibility
is to describe the behaviour of the function f for a specific value of the variable t. One
could imagine that one measures the exact state of the process at the beginning of an ex-
periment. Mathematically speaking, what we will do is to pose an initial value condition,
that is to say, a condition on a function f (t) of the form f (t0) = y0, .

Definition 12.6

Given a real-valued function f (t) and real numbers t0 and y0 such that f (t0) = y0.
Then the function f (t) is said to satisfy the initial value condition f (t0) = y0.

It turns out that in many interesting applications, a function f : R → R is completely
determined if it satisfies both a first-order ODE and an initial value condition. We give
a description of the situation for general ODEs.

Definition 12.7

Let f (t) be a real-valued function satisfying:

1. An n-th order ODE F( f (n)(t), . . . , f ′(t), f (t), t) = 0.

2. The initial value conditions f (t0) = y0, f ′(t0) = y1, . . . , f (n)(t0) = yn, for given
t0 ∈ R and values y0, y1, . . . , yn ∈ R.

The two conditions together are called an initial value problem. The function f (t) is
said to be a solution to the initial value problem.

For a first-order ODE F( f ′(t), f (t), t) = 0, this amount to saying that f (t) is a solution
to the initial value problem if it satisfies

1. F( f ′(t), f (t), t) = 0 and

2. f (t0) = y0, for given t0 ∈ R and a value y0.

The strategy of solving an initial value problem often follows the same pattern. First
compute the general solution to the given ODE. This general solution should contain
some parameters such as c. Then use the initial value condition to determine c. The
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resulting function is the desired solution. Let us look at two examples in the case of
first-order ODEs.

Example 12.8

Solve the following initial value problems. That is to say, compute the function f (t) satisfy-
ing:

1. The ODE f ′(t) = f (t) and the initial value condition f (0) = 7.

2. The ODE f ′(t) + sin(t) f (t) = sin(t) and the initial value condition f (π) = 2.

Answer:

Note that we already have computed the general solution to the given two ODEs in Example
12.4. Now let us look at each initial value problem separately.

1. We have already seen that the general solution to f ′(t) = f (t) is given by f (t) = cet.
The trick is to evaluate f (t) in 0 an compare the result with the initial value condition.
We get that f (0) = c, but according to the initial value condition we should have
f (0) = 7. This means that c = 7. Now that we know c, we find that the desired
function f : R→ R is given by

f (t) = 7et.

2. The general solution is in this case given by f (t) = 1 + cecos(t). Using the initial value
condition, we find that 2 = f (π) = 1 + cecos(π) = 1 + ce−1. This means that ce−1 = 1
and therefore c = e. Hence, the desired function f : R→ R is given by

f (t) = 1 + e · ecos(t) = 1 + e1+cos(t).

Before starting to consider more general ODEs, let us establish one nice property of the
complex exponential function. We know that the derivative of the real-valued function
f (t) = eλt is simply f ′(t) = λeλt for any λ ∈ R. It turns out that this is also true for the
complex exponential function:
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Lemma 12.9

Let λ ∈ C and consider the complex-valued function f : R → C defined as f (x) =
eλt. Then Re( f ) = eRe(λ)t cos(Im(λ)t), Im( f ) = eRe(λ)t sin(Im(λ)t) and f ′(t) = λeλt.

Proof. Let us write λ = λ1 + iλ2 in rectangular form. Then for any t ∈ R, we have

eλt = eλ1t+i·λ2t

= eλ1t · ei·λ2t

= eλ1t · (cos(λ2t) + i · sin(λ2t))
= eλ1t cos(λ2t) + i · eλ1t sin(λ2t)).

This shows that the real part of the expression f (t) = eλt is given by Re( f (t)) =
eλ1t cos(λ2t), while its imaginary part is given by Im( f (t)) = eλ1t sin(λ2t). Now we
set f ′(t) = (Re( f (t)))′ + i · (Im( f (t)))′. Using the product and chain rule to compute
Re( f (t))′ and Im( f (t))′, we get

f ′(t) = Re( f (t))′ + i · Im( f (t))′

= (eλ1t cos(λ2t))′ + i · (eλ1t sin(λ2t))′

= (eλ1tλ1 cos(λ2t) + eλ1t(− sin(λ2t))λ2) + i · (eλ1tλ1 sin(λ2t) + eλ1t cos(λ2t)λ2)

= (λ1 + iλ2)eλ1t cos(λ2t) + (−λ2 + iλ1)eλ1t sin(λ2t)
= (λ1 + iλ2)eλ1t(cos(λ2t) + i sin(λ2t))
= (λ1 + iλ2)eλ1teiλ2t

= λeλt.

This lemma will be extremely useful when finding solutions to certain types of ODEs
later on.

12.2 Systems of linear first-order ODEs with constant
coefficients

In the previous section, we considered linear, first-order ODEs. Now, we consider a
system of such ODEs, but we will only consider the case where all the functions occur-
ring as coefficients are constant. After this, in the next section, we will show that some
higher order ODEs can be solved using the theory from this section.
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Definition 12.10

Let n > 0 be an integer, q1(t), . . . , qn(t) real-valued differentiable functions and A ∈
Rn×n a matrix. Then a system of linear, first-order ODEs is an equation of the form

f ′1(t)
f ′2(t)

...
f ′n(t)

 = A ·


f1(t)
f2(t)

...
fn(t)

+


q1(t)
q2(t)

...
qn(t)

 (12-2)

The matrix A is called the coefficient matrix of the system, while the functions
q1(t), . . . , qn(t) are called the forcing functionsforcing function of the system. If all forc-
ing functions q1(t), . . . , qn(t) are equal to the zero function, the system of ODEs is
called homogeneous, otherwise it is called inhomogeneous. A solution to an inhomoge-
neous system of linear, first-order ODEs is called a particular solution.

Example 12.11

Given is the following system of linear, first-order ODEs:[
f ′1(t)
f ′2(t)

]
=

[
2 1
0 2

]
·
[

f1(t)
f2(t)

]
+

[
et

0

]
. (12-3)

1. Is the given system of ODEs (12-3) homogeneous or inhomogeneous?

2. Is ( f1(t), f2(t)) = (e2t, 0) a solution to equation (12-3)?

3. Is ( f1(t), f2(t)) = (−et, 0) a solution to equation (12-3)?

Answer:

1. The system of ODEs (12-3) is inhomogeneous. Even though the forcing function q2(t)
is the zero function, the function q1(t) is not. For a homogeneous system, all forcing
functions should be the zero function.

2. If ( f1(t), f2(t)) = (e2t, 0), then[
f ′1(t)
f ′2(t)

]
=

[
(e2t)′

0

]
=

[
2e2t

0

]
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and [
2 1
0 2

]
·
[

f1(t)
f2(t)

]
+

[
et

0

]
=

[
2 · e2t + 1 · 0
0 · e2t + 2 · 0

]
+

[
et

0

]
=

[
2e2t + et

0

]
.

Therefore ( f1(t), f2(t)) = (e2t, 0) is not a solution to equation (12-3).

3. If ( f1(t), f2(t)) = (−et, 0), then[
f ′1(t)
f ′2(t)

]
=

[
(−et)′

0

]
=

[
−et

0

]
and [

2 1
0 2

]
·
[

f1(t)
f2(t)

]
+

[
et

0

]
=

[
2 · (−et) + 1 · 0
0 · (−et) + 2 · 0

]
+

[
et

0

]
=

[
−et

0

]
.

Therefore ( f1(t), f2(t)) = (−et, 0) is a solution to equation (12-3). By definition, it is in
fact a particular solution to equation (12-3).

Now, a bit similarly to what we did for systems of linear equations, we begin by de-
scribing the structure of the solutions of systems of linear, first-order ODEs.

Theorem 12.12

Let an inhomogeneous system of ODEs as in equation (12-2) be given and suppose
that (g1(t), g2(t), . . . , gn(t)) is a particular solution of this system. Then any other
solution (g̃1(t), g̃2(t), . . . , g̃n(t)) to equation (12-2) is of the form

g̃1(t)
g̃2(t)

...
g̃n(t)

 =


g1(t)
g2(t)

...
gn(t)

+


f1(t)
f2(t)

...
fn(t)

 ,

where ( f1(t), f2(t), . . . , fn(t)) is a solution to the homogeneous system of ODEs cor-
responding to equation (12-2):

f ′1(t)
f ′2(t)

...
f ′n(t)

 = A ·


f1(t)
f2(t)

...
fn(t)

 . (12-4)
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Proof. Suppose that (g̃1(t), g̃2(t), . . . , g̃n(t)) is an arbitrary solution to equation (12-2),
then a direct computation shows that (g̃1(t)− g1(t), g̃2(t)− g2(t), . . . , g̃n(t)− gn(t)) sat-
isfies equation (12-4). If we then define fi(t) = g̃i(t)− gi(t) for i = 1, . . . , n, we see that
(g̃1(t), g̃2(t), . . . , g̃n(t)) can be written as stated in the theorem.

Conversely, if ( f1(t), f2(t), . . . , fn(t)) is a solution to the homogeneous system from
equation (12-4), then a direct calculation shows that (g1(t)+ f1(t), g2(t)+ f2(t), . . . , gn(t)+
fn(t)) is a solution to the inhomogeneous system from equation (12-2).

Algorithmically, this means that in order to solve an inhomogeneous system of ODEs as
in equation (12-2), we need to find a particular solution of it and then all solutions to the
corresponding homogeneous system of ODEs given in equation (12-4). Conceptually,
one can understand Theorem 12.12 in a different way. Let C∞ be the vector space from
Example 9.34. It consists of all functions with domain and codomain R that can be
differentiated arbitrarily often. Now for a given matrix A ∈ Rn×n, consider the map
DA : Cn

∞ → Cn
∞ defined by

DA




f1(t)
f2(t)

...
fn(t)


 =


f ′1(t)
f ′2(t)

...
f ′n(t)

−A ·


f1(t)
f2(t)

...
fn(t)

 . (12-5)

One can show that DA is a linear map of real vector spaces. The kernel of this map
is exactly the solution set the homogeneous system of ODEs in equation (12-4). This
observation is a generalization of what we already have seen in Example 10.24. A par-
ticular solution is then nothing but a vector vp = (g1(t), g2(t), . . . , gn(t)) ∈ Cn

∞ such that
DA(vp) = (q1(t), . . . , qn(t)). Therefore, Theorem 12.12 is nothing but a special case of
the second item in Theorem 10.38. As an aside, since the kernel of any linear map is a
subspace, we can conclude that the solution set to a homogeneous system of linear, first-
order ODEs (with constant coefficients) is in fact a vector space over the real numbers,
since it is the kernel of the linear map DA. A very useful fact, that we will not prove
here, is that this vector space has finite dimension, namely n. This is useful to know,
since it means that to describe all solutions to system (12-4), it is enough to find a basis,
that is to say, n linearly independent solutions. We will use this freely later on. What we
will primarily focus on in the remainder of this section is how to find such a basis. The
notion of a general solution we already encountered in Section 12.1 for linear, first-order
ODEs can now be generalized as follows:
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Definition 12.13

Let A ∈ Rn×n be given. The general solution of the homogeneous ODEs
f ′1(t)
f ′2(t)

...
f ′n(t)

 = A ·


f1(t)
f2(t)

...
fn(t)


is an expression of the form

c1 · v1 + · · ·+ cn · vn , c1, . . . , cn ∈ R,

where (v1, . . . , vn) is an ordered basis of the kernel of the linear map DA : Cn
∞ → Cn

∞
defined in equation (12-5). If q1(t), . . . , qn(t) are forcing functions (not all zero) and
vp = (g1(t), . . . , gn(t)) ∈ Cn

∞ a particular solution of the inhomogeneous system of
ODEs 

f ′1(t)
f ′2(t)

...
f ′n(t)

 = A ·


f1(t)
f2(t)

...
fn(t)

+


q1(t)
q2(t)

...
qn(t)

 ,

then the general solution of the inhomogeneous system is an expression of the form

vp + c1 · v1 + · · ·+ cn · vn , c1, . . . , cn ∈ R.

A first important trick is to use the theory of eigenvalues and eigenvectors of the matrix
A, as we will see in the next lemma.
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Lemma 12.14

Let A ∈ Rn×n be a matrix and suppose that v = (v1, . . . , vn) ∈ Rn is an eigenvector
of A with eigenvalue λ ∈ R. Then the vector of functions

f1(t)
f2(t)

...
fn(t)

 =


v1eλt

v2eλt

...
vneλt


satisfies the homogeneous system of ODEs

f ′1(t)
f ′2(t)

...
f ′n(t)

 = A ·


f1(t)
f2(t)

...
fn(t)

 .

Proof. On the one hand, we have
f ′1(t)
f ′2(t)

...
f ′n(t)

 =


v1(eλt)′

v2(eλt)′

...
vn(eλt)′

 =


v1λeλt

v2λeλt

...
vnλeλt

 = λ


v1eλt

v2eλt

...
vneλt

 = λ


f1(t)
f2(t)

...
fn(t)

 .

On the other hand, we find

A ·


f1(t)
f2(t)

...
fn(t)

 = A ·


v1eλt

v2eλt

...
vneλt

 = A ·


v1
v2
...

vn

 · eλt = λ


v1
v2
...

vn

 · eλt = λ


f1(t)
f2(t)

...
fn(t)

 .
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Example 12.15

Let

A =

[
2 1
0 2

]
.

Find a solution to the homogeneous system of linear, first-order ODEs with coefficient matrix
A.

Answer:

We are asked to find a solution to the following system of ODEs:[
f ′1(t)
f ′2(t)

]
=

[
2 1
0 2

]
·
[

f1(t)
f2(t)

]
. (12-6)

With Lemma 12.14 in mind, we start by finding an eigenvalue and eigenvector of the given
matrix A. The characteristic polynomial of A is:

pA(Z) = det(A− λI2) = det
([

2− λ 1
0 2− λ

])
= (2− λ)2 = (λ− 2)2.

Hence 2 is the the only eigenvalue the matrix A has. To find an eigenvector of A with eigen-
value 2, we need to compute a nonzero vector from the kernel of the matrix A − 2I2. In
principle, we should then first find the reduced row echelon form of A − 2I2, but in this
particular case it is in reduced row echelon form already:

A− 2I2 =

[
0 1
0 0

]
We conclude that ker(A − 2I2) is a one-dimensional vector space with basis given by for
example {[

1
0

]}
.

Now Lemma 12.14 implies that[
f1(t)
f2(t)

]
=

[
1e2t

0e2t

]
=

[
e2t

0

]
is a solution to equation (12-6).

Lemma 12.14 is already good enough to find the general solution of equation (12-4) in
case the matrix A can be diagonalized.
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Theorem 12.16

Let A ∈ Rn×n be a matrix and let (v1, . . . , vn) be an ordered basis of Rn consisting of
eigenvectors of A corresponding to eigenvalues λ1, . . . , λn. Then the homogeneous
system (12-4) has general solution

c1 · v1eλ1t + · · ·+ cn · vneλnt , c1, . . . , cn ∈ R.

Proof. We already know from Lemma 12.14 that each of the vectors of functions vieλit for
i = 1, . . . , n is a solution. Using the fact that the solution space has dimension n, we are
done if we can show that these solutions are linearly independent. If ∑n

i=1 aivieλit = 0
for certain ai ∈ R, then in particular putting t = 0, we find that ∑n

i=1 aivi = 0. Since the
vectors v1, . . . , vn are linearly independent, forming an ordered basis of Rn, we conclude
that ai = 0 for all i = 1, . . . , n. Hence the vectors of functions v1eλ1t, . . . , vneλnt are
linearly independent as well.

Note that in Theorem 12.16 it can happen that some eigenvalues appear several times.
In other words: we allow the case where the algebraic multiplicity of some eigenvalues
is greater than one. However, we assume in Theorem 12.16, that there exists a basis
consisting of eigenvectors (or equivalently that the matrix A is diagonalizable). Hence
the theorem will not be applicable if some eigenvalue of A has a smaller geometric than
algebraic multiplicity.

Example 12.17

Let

A =


2 0 0 0
0 2 0 0
0 0 0 1
0 0 1 0

 .

Then pA(Z) = (Z− 2)2 · (Z2 − 1) = (Z− 2)2 · (Z− 1) · (Z + 1). Hence A has three eigenval-
ues 2, 1 and −1 with algebraic multiplicities 2, 1 and 1 respectively. One can show that bases
of the eigenspaces E2, E1 and E−1 are given by


1
0
0
0

 ,


0
1
0
0


 ,




0
0
1
1


 and




0
0
1
−1


 .
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In particular, the geometric and algebraic multiplicity is the same for each eigenvalue. Using
Theorem 12.16, we see that the general solution to the system of linear, first-order ODEs

f ′1(t)
f ′2(t)
f ′3(t)
f ′4(t)

 =


2 0 0 0
0 2 0 0
0 0 0 1
0 0 1 0

 ·


f1(t)
f2(t)
f3(t)
f4(t)


is given by

f1(t)
f2(t)
f3(t)
f4(t)

 = c1


1
0
0
0

 e2t + c2


0
1
0
0

 e2t + c3


0
0
1
1

 et + c4


0
0
1
−1

 e−t =


c1e2t

c2e2t

c3et + c4e−t

c3et − c4e−t

 ,

where c1, c2, c3, c4 ∈ R.

The requirement in Theorem 12.16 that there exists a basis of eigenvectors can fail. One
thing that could happen is that the characteristic polynomial pA(Z) does not factor in a
product of degree one polynomials. Equivalently: pA(Z) could have complex, non-real
roots. The following theorem extends Theorem 12.16 in that setting.

Theorem 12.18

Let A ∈ Cn×n be a matrix and let (v1, . . . , vn) be an ordered basis of Cn consisting of
eigenvectors of A corresponding to (possibly complex) eigenvalues λ1, . . . , λn. Then
over the complex numbers the homogeneous system (12-4) has general solution

c1 · v1eλ1t + · · ·+ cn · vneλnt , c1, . . . , cn ∈ C.

Proof. The proof is practically identical to that of Theorem 12.16. The only difference is
that we now work over the complex numbers. Note that Lemma 12.9 guarantees that
(eλt)′ = λeλt also for λ ∈ C.

Now suppose that A ∈ Rn×n, but that its characteristic polynomial pA(Z) has complex
roots. We could view A as a matrix in Cn×n and apply Theorem 12.18 to obtain a general
solution. The problem with this, is that we now found a general solution of complex-
valued solutions to equation 12-4. One often is interested in a general solution of the
real-valued solutions instead. Fortunately, this can be achieved with a few tricks. The
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main trick is that since pA(Z) has coefficients in R if A ∈ Rn×n, non-real roots occur in
pairs: if µ ∈ C \R is a root, then also µ ∈ C is a root, where µ denotes the complex
conjugated of λ (see Lemma 4.12). In particular, the roots of pA(Z) can be arranged in
the form λ1, . . . , λr for the real roots and µ1, . . . , µs, µ1, . . . , µs for the complex, nonreal
roots. Then n = r + 2s, where we simply repeat a root m times if it occurs with some
multiplicity. Let us illustrate this with an example.

Example 12.19

Suppose that pA(Z) = (Z − 1) · (Z − 2)3 · (Z2 + 1)2 for some matrix A ∈ R7×7. Then the
roots of this polynomial are 1, 2 with multiplicity 3 and i,−i, both with multiplicity 2. There
are two real roots, namely 1 and 2, but if we consider these roots with their multiplicity, we
should repeat the root 2 thrice. Hence λ1 = 1, λ2 = 2, λ3 = 2 and λ4 = 2. There are two
complex, nonreal roots i and−i, which both should be repeated twice. Hence we have µ1 = i,
µ2 = i, whence µ1 = −i and µ2 = −i. Hence in this setting, we have r = 3 and s = 2.

To describe the general solution of equation 12-4 in case pA(Z) has nonreal roots, it will
be convenient to define the complex conjugate of a vector w ∈ Cn: if w = (w1, . . . , wn),
then w = (w1, . . . , wn). The point is that if A ∈ Rn×n and A ·w = µ ·w for some w ∈ Cn

and µ ∈ C \R, then taking the complex conjugate (and using that the coefficients of A
are real numbers), we see that A ·w = µ ·w. With this in mind, Theorem 12.18 implies
the following.
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Corollary 12.20

Suppose that A ∈ Rn×n and that the roots of its characteristic polynomial pA(Z)
are arranged with multiplicity as λ1, . . . , λr ∈ R and µ1, . . . , µs, µ1, . . . , µs, where
µ1, . . . , µs ∈ C \R. Now suppose that there exist vectors vi ∈ Rn for i = 1, . . . , s and
wj ∈ Cn for j = 1, . . . , s such that:

1. A · vi = λi · vi for i = 1, . . . , r,

2. A ·wj = µj ·wj for j = 1, . . . , s,

3. the vectors v1, . . . , vr, w1, . . . , ws, w1, . . . , ws form an ordered basis of Cn.

Then the homogeneous system (12-4) has general solution

c1 · v1eλ1t + · · ·+ cr · vreλrt + cr+1 · Re(w1eµ1t) + · · ·+ cr+s · Re(wseµst)+

cr+s+1 · Im(w1eµ1t) + · · ·+ cn · Im(wseµst) , c1, . . . , cn ∈ R.

Proof. When viewed as a matrix over C, the eigenvalues of A are given by

λ1, . . . , λr, µ1, . . . , µs, µ1, . . . , µs.

Hence Theorem 12.18 implies that

v1eλ1t, . . . , vreλrt, w1eµ1t, . . . , wseµst, w1eµ1t, . . . , wseµst

form a basis of the set of solutions of equation (12-4) when working over C. To find a
basis of this set of solutions when working over R, we modify this basis. First of all,
the solutions v1eλ1t, . . . , vreλrt are already real-valued functions, so no modification is
needed for these. Given a pair of complex-valued solutions wjeµjt and wje

µjt for some j,
we can replace this pair by the pair

wjeµjt + wje
µjt

2
= Re(wjeµjt) and

wjeµjt −wje
µjt

2i
= Im(wjeµjt).

Since Re(wjeµjt) and Im(wjeµjt) describe real-valued functions, we therefore obtain a
basis of all real-valued solutions of equation (12-4) from the n solutions

v1eλ1t, . . . , vreλrt, Re(w1eµ1t), . . . , Re(wseµst), Im(w1eµ1t), . . . , Im(wseµst).
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The first item in the corollary simply means that the vector vi is an eigenvector of A with
eigenvalue λi. The second item means that if we would work over the field of complex
numbers C, instead of R, then wj would be an eigenvector with eigenvalue µj. In that
case wj can be shown to be an eigenvector of A with eigenvalue µj. Finally, the third
item means that there exists a basis of Cn consisting of eigenvectors of A, when viewed
as a matrix in Cn×n. Hence the three items together can also be reformulated as: when
viewed as a matrix in Cn×n, the matrix A is diagonalizable.

Corollary 12.20 may look complicated at first sight, but it is very practical in concrete
cases. Let us therefore consider an example.

Example 12.21

Let

A =

[
0 13
−1 4

]
.

The aim in this example is to show how to obtain the general solution of the homogeneous
system of ODEs [

f ′1(t)
f ′2(t)

]
=

[
0 13
−1 4

]
·
[

f1(t)
f2(t)

]
. (12-7)

To be more precise, we want to find the general solution consisting of real-valued functions.

First of all, we compute that

pA(Z) = det(A−ZI2) = det
([
−Z 13
−1 4− Z

])
= (−Z) · (4−Z)− 13 · (−1) = Z2− 4Z+ 13.

This polynomial has roots 2 + 3i and 2− 3i (see Theorem 4.6). Since the roots are nonreal,
let us work over the complex numbers for now. First we compute a complex eigenvector for
the nonreal root 2 + 3i. We do this by finding the reduced row echelon form of the matrix
A− (2 + 3i)I2:

A− (2 + 3i)I2 =

[
−2− 3i 13
−1 2− 3i

]
−→

R1 ↔ R2

[
−1 2− 3i
−2− 3i 13

]
−→

R1 ← −R1

[
1 −2 + 3i

−2− 3i 13

]
−→

R2 ← R2 + (2 + 3i)R1

[
1 −2 + 3i
0 0

]
.

Now we see that E2+3i, that is to say the kernel of A− (2 + 3i)I2 when viewed as a matrix in
C2×2, is equal to {(v1, v2) ∈ C2 | v1 = (2− 3i)v2}. Hence a basis of E2+3i is for example given
by {[

2− 3i
1

]}
.
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Similarly, one shows that a possible basis of E2−3i is{[
2 + 3i

1

]}
,

but we do not actually need this second basis. Now following the recipee described in Corol-
lary 12.20, we first compute[

2− 3i
1

]
e(2+3i)t =

[
2− 3i

1

]
e2t(cos(3t) + i sin(3t))

=

[
(2− 3i)e2t(cos(3t) + i sin(3t))

e2t(cos(3t) + i sin(3t))

]
=

[
2e2t cos(3t) + 3e2t sin(3t) + i(2e2t sin(3t)− 3e2t cos(3t))

e2t cos(3t) + ie2t sin(3t)

]

Hence

Re
([

2− 3i
1

]
e(2+3i)t

)
=

[
2e2t cos(3t) + 3e2t sin(3t)

e2t cos(3t)

]
and

Im
([

2− 3i
1

]
e(2+3i)t

)
=

[
2e2t sin(3t)− 3e2t cos(3t)

e2t sin(3t)

]
.

By Corollary 12.20, we can conclude that the general solution of system (12-7) is given by[
f1(t)
f2(t)

]
= c1 ·

[
2e2t cos(3t) + 3e2t sin(3t)

e2t cos(3t)

]
+ c2 ·

[
2e2t sin(3t)− 3e2t cos(3t)

e2t sin(3t)

]
,

where c1, c2 ∈ R.

We have now given the general solution in case the matrix A is diagonalizable over
R (Theorem 12.16) or over C (Corollary 12.20). If the matrix is not diagonalizable, not
even over C, a formula for the general solution is known, but this is out of scope of these
notes. We will show an example though for a particular case.

Example 12.22

Let

A =

[
λ 1
0 λ

]
, with λ ∈ R.

This matrix has λ as eigenvalue with algebraic multiplicity two and geometric multiplicity
one. Hence Theorem 12.16 does not apply, since Eλ is only one-dimensional with basis for
example formed by the vector (1, 0).
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We wish to determine the general solution to the system of ODEs[
f ′1(t)
f ′2(t)

]
=

[
λ 1
0 λ

]
·
[

f1(t)
f2(t)

]
. (12-8)

In other words, we have the two ODEs f ′1(t) = λ · f1(t) + f2(t) and f ′2(t) = λ · f2(t). One
solution is found by putting f2(t) = 0, the zero function, and f1(t) = eλt. In other words:
the vector of functions (eλt, 0) is a solution to system (12-8). Another solution can be found
by choosing f2(t) = eλt. Then f1(t) needs to satisfy the linear inhomogeneous ODE f ′1(t) =
λ · f1(t) + eλt. Using Corollary 12.5, we see that f1(t) = eλt

∫
e−λteλtdt = eλtt + c · eλt, where

c ∈ R. Choosing c = 0, we see that ( f1(t), f2(t)) = (teλt, eλt) is also a solution to system
(12-8). Since we now have found two linearly independent solutions, we can conclude that
the general solution of system (12-8) is given by[

f1(t)
f2(t)

]
= c1 ·

[
eλt

0

]
+ c2 ·

[
teλt

eλt

]
, c1, c2 ∈ R.

12.3 Relating systems of linear, first-order ODEs with
linear, n-th order ODEs

As an application of the previous section, we briefly consider a very special type of n-th
order ODEs:

Definition 12.23

Let n be a natural number, a0, . . . , an−1 ∈ R constants and q : R → R a function.
Then a linear, n-th order ODE with constant coefficients is an ODE of the form

f (n)(t) + an−1 · f (n−1)(t) + · · ·+ a1 · f ′(t) + a0 · f (t) = q(t). (12-9)

The function q(t) is called the forcing function of the ODE. If the forcing function q(t)
is the zero function, the ODE is called homogeneous, otherwise it is called inhomoge-
neous.

As mentioned in Definition 12.7, one often poses initial value conditions of the form
f (t0) = y0, f ′(t0) = y1, . . . , f (n)(t0) = yn, for a given t0 ∈ R and values y0, y1, . . . , yn ∈
R. One can show that if q(t) is a differentiable function, then ODE (12-9) has exactly
one solution satisfying a given initial value condition. For ODEs as in equation (12-9), a
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way to find this solution is to first determine its general solution. We will explain how
to do this in this section.

The main trick is to relate a solution of a linear, n-th order ODE with constant coefficients
with a solution of an appropriately chosen system of linear, first-order ODEs.

Theorem 12.24

Let a function f : R→ R be given. If f is a solution to the ODE

f (n)(t) + an−1 · f (n−1)(t) + · · ·+ a1 · f ′(t) + a0 · f (t) = q(t), (12-10)

then the vector of functions ( f (t), f ′(t), . . . , f (n−1)(t)) is a solution to the system of
ODEs

f ′1(t)
f ′2(t)

...
f ′n(t)

 =


0 1 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 1 0
0 · · · 0 0 1
−a0 · · · · · · −an−2 −an−1

 ·


f1(t)
f2(t)

...
fn(t)

+


0
...
0

q(t)

 . (12-11)

Conversely, if ( f1(t), . . . , fn(t)) is a solution to the system of ODEs (12-11), then f1(t)
is a solution to ODE (12-10).

Proof. This is left to the reader.

Example 12.25

A function f (t) is a solution to the linear, second-order ODE f ′′(t) + 5 f ′(t) + 6 f (t) = 0 if and
only if the vector of functions ( f (t), f ′(t)) is a solution to the system of ODEs[

f ′1(t)
f ′2(t)

]
=

[
0 1
−6 −5

]
·
[

f1(t)
f2(t)

]
.

Theorem 12.24 implies that when investigating ODE (12-9), we can use all theory we
have developed in the previous section. For example, we can conclude the following.
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Corollary 12.26

Let an inhomogeneous, linear, n-th order ODE

f (n)(t) + an−1 · f (n−1)(t) + · · ·+ a1 · f ′(t) + a0 · f (t) = q(t)

be given and suppose that fp(t) is a particular solution of this differential equation.
Then any other solution f (t) is of the form fp(t) + fh(t), where fh(t) is a solution to
the corresponding homogeneous ODE

f (n)(t) + an−1 · f (n−1)(t) + · · ·+ a1 · f ′(t) + a0 · f (t) = 0. (12-12)

Proof. This follows by combining Theorems 12.12 and 12.24.

As for systems of n linear, first-order ODEs, one can show that the solution set of a ho-
mogeneous, linear, n-th order ODE forms a vector space of dimension n. Therefore, to
describe a general solution, one needs to find n linearly independent solutions. Simi-
larly as in the case of systems of linear, first-order ODEs, a first step towards computing
the general solution of a linear, n-th order ODE, is to find the general solution of the cor-
responding homogeneous ODE. If we would use Theorem 12.24, the first step would be
to compute the characteristic polynomial of matrices of the form occurring in Theorem
12.24. Fortunately, there is a practical formula for the characteristic polynomials of such
matrices. It even works over any field F.

Lemma 12.27

Let F be a field, n ≥ 2 an integer and a0, . . . , an−1 ∈ F. Then the characteristic
polynomial of the matrix

A =


0 1 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 1 0
0 · · · 0 0 1
−a0 · · · · · · −an−2 −an−1


is equal to

pA(Z) = (−1)n · (Zn + an−1Zn−1 + · · ·+ a1Z + a0).
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Proof. We prove this by induction on n for n ̸= 2. If n = 2, we can directly see that

pA(Z) = det
([
−Z 1
−a0 −a1 − Z

])
= (−Z) · (−a1 − Z)− 1 · (−a0) = Z2 + a1Z + a0.

Now assume that n > 2 and that the result is true for n− 1. Developing the determinant
of A− ZIn in the first column, we see that:

det (A− ZIn) = −Z · det




−Z 1 0 · · · 0

... . . . . . . . . . ...
0 · · · −Z 1 0
0 · · · 0 −Z 1
−a1 · · · · · · −an−2 −an−1 − Z





+ (−1)n · (−a0) · det




1 0 0 · · · 0
−Z 1 0 · · · 0

... . . . . . . . . . ...
0 · · · −Z 1 0
0 · · · 0 −Z 1



 .

Using the induction hypothesis on the first determinant after the equality and Theorem
8.11 for the second determinant, we see that

det (A− ZIn) = (−Z) · (−1)n−1 · (Zn−1+an−1Zn−2 + · · ·+ a1) + (−1)n−1 · (−a0) · 1
= (−1)n · (Zn + an−1Zn−1 + . . . f a1Z + a0).

This concludes the induction step. Hence the lemma is true for any integer n ≥ 2.

The matrix in Lemma 12.27 is called the companion matrix of the polynomial Zn + an−1Zn−1 +
· · ·+ a0. Lemma 12.27 implies that when solving the linear, n-th order ODE (12-9), then
the first thing one needs to do is to find the roots of the polynomial Zn + an−1Zn−1 +
. . . f a1Z + a0. The polynomial

Zn + an−1Zn−1 + . . . f a1Z + a0

is often called the characteristic polynomial of the ODE

f (n)(t) + an−1 · f (n−1)(t) + · · ·+ a1 · f ′(t) + a0 · f (t) = 0.

At this point, we could continue to develop the theory of linear, n-th order ODEs, but
we will not do this in these notes. Instead, we will study what happens in case n = 2 in
the next section.
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12.4 Solving homogeneous, linear, second-order ODEs

The aim in this section is to find the general solution of a homogeneous ODE of the form

f ′′(t) + a1 f ′(t) + a0 f (t) = 0, where a0, a1 ∈ R. (12-13)

We have seen in the previous section that one should start by finding the roots of its
characteristic polynomial Z2 + a1Z + a0. There are three cases to distinguish, depend-
ing on whether this polynomial has two distinct real roots, two complex conjugated,
nonreal roots, or one real root with multiplicity two (see Theorem 4.6).

Case 1: The polynomial Z2 + a1Z + a0 has two distinct real roots. If Z2 + a1Z + a0
has two distinct real roots, this means that its discriminant D = a2

1 − 4a0 is positive and

that the real roots are λ1 =
−a1 +

√
D

2
and λ2 =

−a1 +
√

D
2

. We could now use The-
orem 12.24 and Theorem 12.16 to find the general solution to ODE (12-13), but a direct
approach is faster. The point is though that after the theory about systems of ODEs,
we expect that the general solution will involve the functions eλ1t and eλ2t. Indeed, we
simply claim that both eλ1t and eλ2t are solutions to ODE (12-13). For example, we see
that

(eλ1t)′′ + a1(eλ1t)′ + a0eλ1t = λ2
1eλ1t + a1λ1eλ1t + a0eλ1t

= (λ2
1 + a1λ1 + a0)eλ1t

= 0,

where in the last equality, we used that λ1 is a root of the polynomial Z2 + a1Z + a0.
Very similarly, one shows that the function eλ1t also is a solution. If D = a2

1 − 4a0 > 0,
the general solution to ODE (12-13) will therefore be:

c1 · eλ1t + c2 · eλ2t = c1 · e

(
−a1+

√
D

2

)
t
+ c2 · e

(
−a1−

√
D

2

)
t
, c1, c2 ∈ R. (12-14)

Case 2: The polynomial Z2 + a1Z + a0 has two nonreal roots. In this case the discrimi-

nant D = a2
1− 4a0 is negative and the roots of Z2 + a1Z + a0 are λ1 =

−a1 + i
√
|D|

2
and

λ2 =
−a1 − i

√
|D|

2
. Very similarly as in the previous case, one can show, this time using

Lemma 12.9, that both eλ1t and eλ2t are complex-valued solutions to ODE (12-13). To
find real-valued solutions, we simply take the real and imaginary parts of one of these
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solutions, inspired by what we did in Corollary 12.20. We have

Re(eλ1t) = Re(e(
−a1+i

√
|D|

2 )t) = e(
−a1

2 )t cos

(√
|D|
2

t

)

and similarly

Im(eλ1t) = Im(e(
−a1+i

√
|D|

2 )t) = e(
−a1

2 )t sin

(√
|D|
2

t

)
.

If D = a2
1 − 4a0 < 0, the general solution to ODE (12-13) will therefore be:

c1 · e(
−a1

2 )t cos

(√
|D|
2

t

)
+ c2 · e(

−a1
2 )t cos

(√
|D|
2

t

)
, c1, c2 ∈ R. (12-15)

Case 3: The polynomial Z2 + a1Z + a0 has one real root with multiplicity two. In this
case the discriminant D = a2

1 − 4a0 is zero and the double root is given by λ = −a1/2.
As in the previous cases, one can show directly that eλt is a solution to ODE (12-13), but
what is missing is a second solution. Again we can get inspiration from what happened
for systems of linear ODEs. In Example 12.22, we were in the situation that the algebraic
multiplicity of an eigenvalue was two, but its geometric multiplicity was one. We are in
a similar situation here. Indeed, if D = 0, then the companion matrix A of Z2 + a1Z + a0
has eigenvalue λ with algebraic multiplicity two, but one can show that its geometric
multiplicity is only one. Since in Example 12.22, the function teλt appeared, it is natural
to try if this function is a solution to ODE (12-13). This is indeed the case:

(teλt)′′ + a1(teλt)′ + a0teλt = (eλt + tλeλt)′ + a1(eλt + tλeλt) + a0teλt

= (λeλt + λeλt + tλ2eλt) + a1(eλt + tλeλt) + a0teλt

= (λ2 + a1λ + a0)teλt + (2λ + a1)eλt

= (2λ + a1)eλt

= 0,

where in the last two equalities we used that λ2 + a1λ + a0 = 0 and λ = −a1/2. We
conclude the following. If D = a2

1 − 4a0 = 0, the general solution to ODE (12-13) is:

c1 · eλt + c2 · teλt = c1 · e
(−a1

2

)
t
+ c2 · t · e

(−a1
2

)
t , c1, c2 ∈ R. (12-16)

We finish the section with considering several examples.
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Example 12.28

Compute the general solution to the differential equation f ′′(t)− 5 f ′(t) + 6 f (t) = 0.

Answer: The characteristic polynomial of the differential equation is Z2 − 5Z + 6. This poly-
nomial has discriminant 1 and therefore has two disctinct real roots. Computing these roots
in the usual way, one finds that they are 2 and 3.

Using equation (12-14), we then find the following general solution

f (t) = c1e2t + c2e3t , (c1, c2 ∈ R).

Example 12.29

Compute the general solution to the differential equation f ′′(t)− 4 f ′(t) + 4 f (t) = 0.

Answer: The characteristic polynomial of the differential equation is Z2 − 4Z + 4, which has
discriminant zero. More precisely, it has 2 as a root with multiplicity two. Equation (12-16)
then implies that the general solution we are looking for is given by:

f (t) = c1e2t + c2te2t , (c1, c2 ∈ R).

Example 12.30

Compute the general solution to the differential equation f ′′(t)− 4 f ′(t) + 13 f (t) = 0.

Answer: In this case, the characteristic polynomial of the differential equation is Z2− 4Z+ 13,
which has a negative discriminant, namely D = (−4)2 − 4 · 13 = −36. Hence the character-
istic polynomial has two non-real roots, which turn out to be 2 + 3i and 2− 3i. According to
(12-15) the wanted general solution is:

f (t) = c1e2t cos(3t) + c2e2t sin(3t) , (c1, c2 ∈ R).

Finally, we give examples of inhomogeneous, linear, second-order ODEs.
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Example 12.31

Compute the general solution to the following differential equations:

1. f ′′(t) − 5 f ′(t) + 6 f (t) = t. It is given that there exists a particular solution of the form
f (t) = at + b with a, b ∈ R.

2. f ′′(t)− 4 f ′(t) + 4 f (t) = et. It is given that f (t) = et is a solution.

3. f ′′(t)− 4 f ′(t) + 13 f (t) = 1. It is given that there exists a solution of the form f (t) = a with
a ∈ R.

Answer:

Using Corollary 12.26 and the previous examples, it is enough to find a particular solution to
each of the differential equations.

1. Let us try to find a particular solution of the form f (t) = at + b, with a, b ∈ R. Inserting
this in the differential equation, we see that 0 − 4a + 4(at + b) = t. Hence 4a = 1 and
−4a + 4b = 0. We see that f (t) = t/4 + 1/4 is a particular solution. Using Example 12.28
and Corollary 12.26, we conclude that the general solution is given by:

f (t) =
t
4
+

1
4
+ c1e2t + c2e3t , (c1, c2 ∈ R).

2. Since we are given a particular solution, we can find the general solution directly from
Example 12.29 using Corollary 12.26. The result is:

f (t) = et + c1e2t + c2te2t , (c1, c2 ∈ R).

3. First we find a particular solution of the form f (t) = a. Inserting this in the differential
equations, we see that 0 − 4 · 0 + 13a = 1 and therefore f (t) = 1/13 is a particular solu-
tion. Now similarly as before, combining this particular solution and the general solution for
the corresponding homogeneous ODE given in Example 12.30, we find the desired general
solution to the given inhomogeneous equation:

f (t) =
1
13

+ c1e2t cos(3t) + c2e2t sin(3t) , (c1, c2 ∈ R).
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Appendix 1: Some useful formulas
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Rules for differentiation

Differentiation of a sum:
( f (t) + g(t))′ = f ′(t) + g′(t)
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Differentiation of a product (product rule):

( f (t) · g(t))′ = f ′(t) · g(t) + f (t) · g′(t)

Differentiation of composed function (chain rule):

( f (g(t)))′ = f ′(g(t)) · g′(t)

Differentiation of a quotient (quotient rule):(
f (t)
g(t)

)′
=

f ′(t) · g(t)− f (t) · g′(t)
(g(t))2

Derivative of some standard functions (a denotes a real constant, in the case of (at)′ it is
assumed that a is positive; n is an integer):

(a)′ = 0 (at)′ = a (tn)′ = ntn−1

(et)′ = et (at)′ = ln(a)at (ln(t))′ = 1/t

(sin(t))′ = cos(t) (cos(t))′ = − sin(t) (tan(t))′ = 1
cos(t)2 = 1 + tan(t)2



Note 12 12.4 SOLVING HOMOGENEOUS, LINEAR, SECOND-ORDER ODES 308



Note 12 12.4 SOLVING HOMOGENEOUS, LINEAR, SECOND-ORDER ODES 309

Appendix 2: A small dictionary for
mathematical terms

English to Danish

English Danish
absolute value absolutværdi, modulus (i tilfældet af komplekse tal)
argument (of a complex number) argument (af et komplekst tal)
augmented matrix totalmatrix (til et lineært ligningssystem)
associative associativ
biimplication biimplikation
bijective, bijection bijektiv, bijektion
binomial equation, the den binome ligning
chain rule kædereglen
co-domain dispositionsmængde
coefficient matrix koefficientmatrix (til et lineært ligningssystem)
column (of a matrix) søjle
column vector søjlevektor
commutative kommutativ
complex conjugate kompleks konjugerede
complex number komplekst tal
complex plane, the den komplekse talplan
composite, composition sammensat, sammensætning
continuous function kontinuert funktion
coordinate vector koordinatvektor
definite integral bestemt integral
degree grad
derivative of a function afledte funktion
diagonal matrix diagonalmatrix
disjoint disjunkt
domain (of a function) definitionsmængde
double root dobbeltrod
(row) echelon form trappeform
equation ligning
even number lige tal
equation ligning
expansion of the determinant udvikling af determinanten (efter en række eller søjle)
fraction brøktal
general solution fuldstændige løsning
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English Danish
identity matrix identitetsmatrix
image (of a function) billede, værdimængde
implication implikation
indeterminate ubekendte
injective injektiv
integer heltal
intersection of sets fællesmængde
inverse element inverst element
Laplace expansion of the determinant udvikling af determinanten (efter en række eller søjle)
linear combination linearkombination
linearly (in)dependent lineært (u)afhængig
limit grænsværdi
logically equivalent logisk ækvivalent
logical proposition logisk udsagn
lower triangular matrix
nedre trekantsmatrix
matrix, matrices matrix, matricer
modulus modulus, absolutværdi
monic monisk
natural number naturligt tal
odd number ulige tal
particular solution partikulær løsning
partial integration delvis integration, partiel integration
polar coordinates polære koordinater
polynomial polynom, polynomium
preimage urbillede
product rule produktreglen
propositional logic udsagnslogik
primitive function stamfunktion
principal value of the argument hovedargument (af et komplekst tal)
quotient rule kvotientreglen
rank rang (af en matrix)
real line, the den reelle tallinje
real number reelt tal
reduced row echelon form reduceret trappeform (af en matrix)
root of a polynomial rod i et polynom
row (of a matrix) række
row echelon form trappeform
row vector rækkevektor
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English Danish
scalar skalar
second order equation andenordens ligning
set mængde
span udspænding
square matrix kvadratisk matrix
square root kvadratrod
surjective surjektiv
transpose transponerede (matrix)
truth table sandhedstabel
union (of sets) foreningsmængde
unit circle enhedscirklen
upper triangular matrix øvre trekantsmatrix
vector space vektorrum
vertex (vertices) hjørne(r), vinkelspids(er)
zero vector nulvektoren
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Dansk til Engelsk

Dansk Engelsk
absolutværdi absolute value, modulus (in case of complex numbers)
afledte funktion derivative of a function
andenordens ligning second order equation
antiderivative stamfunktion
argument (af et komplekst tal) argument (of a complex number)
associativ associative
bestemt integral definite integral
biimplikation biimplication
bijektiv, bijektion bijective, bijection
billede (af en funktion) image
binome ligning, den the binomial equation
brøktal fraction
definitionsmængde domain (of a function)
delvis integration partial integration, integration by parts
diagonalmatrix diagonal matrix
disjunkt disjoint
dispositionsmængde co-domain
dobbeltrod double root, root of multiplicity two
enhedscirklen unit cirlce
fuldstændige løsning general solution
foreningsmængde union (of sets)
fællesmængde intersection (of sets)
grad degree
grænsværdi limit
heltal integer
hjørne(r) vertex (vertices)
hovedargument (af et komplekst tal) principal value of the argument (of a complex number)
identitetsmatrix identity matrix
implikation implication
injektiv injective
inverst element inverse element
koefficientmatrix coefficient matrix (of a system of linear equations)
kommutativ commutative
komplekst tal complex number
komplekse talplan, det the complex plane
kompleks konjugerede complex conjugate
kontinuert funktion continuous function
koordinatvektor coordinate vector
kvadratisk matrix square matrix
kvadratrod square root
kvotientreglen quotient rule
kædereglen chain rule
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Dansk Engelsk
lige tal even number
ligning equation
linearkombination linear combination
lineært (u)afhængig linearly (in)dependent
logisk udsagn logical proposition
logisk ækvivalent logically equivalent
løsning til en ligning solution for an equation
matrix, matricer matrix, matrices
modulus modulus
monisk monic
mængde set
naturligt tal natural number
nedre trekantsmatrix lower triangular matrix
nulvektor zero vector
numerisk værdi absolute value, modulus (in case of a complex number)
partikulær løsning particular solution
partiel integration partial integration, integration by parts
polynom, polynomium polynomial
polære koordinater polar coordinates
produktreglen product rule
rang rank (of a matrix)
reduceret trappeform reduced row echelon form
reelt tal real number
reelle tallinje, den the real line
rod i et polynomium root of a polynomial
række (af en matrix) row
rækkevektor row vector
sammensat, sammensætning composite, composition
sandhedstabel truth table
skalar scalar
stamfunktion antiderivative, primitive function
surjektiv surjective
søjle (af en matrix) column
søjlevektor column vector
totalmatrix augmented matrix (of a system of linear equations)
trappeform row echelon form
trappematrix matrix in echelon form
transponerede transpose (of a matrix)
ubekendte indeterminate
udsagnslogik propositional logic
udspænding span
udvikling af determinanten expansion of the determinant (along a row or column)
ulige tal odd number
urbillede preimage
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Dansk Engelsk
vektorrum vector space
vinkelspids, vinkelspidser vertex, vertices
værdimængde (af en funktion) image
øvre trekantsmatrix upper triangular matrix



Note 12 INDEX 315

Index

β-coordinate vector, 202

absolute value, 61
algebraic multiplicity (of an eigenvector),

259
algorithm, 39
arccosine, 46
arcsine, 46
arctangent, 47
arcus functions, 45
argument (of a complex number), 61
argument, principal value, 62
associative operation, 35
associative operator, 60, 124
augmented matrix (of a system of linear

equations), 132

base case of the induction, 115
basis, 200
biimplication, 11
bijection, 37
bijective, 37
binomial, 89
binomial equation, 89

call, recursive, 108
Cartesian product, 29
chain rule, 307
change of coordinates matrix, 240
characteristic polynomial (of a linear map),

254
characteristic polynomial (of a linear, n-th

order ODE), 301

characteristic polynomial (of a matrix), 250
closed interval, 26
co-domain, 32
coefficient matrix, 286
coefficient matrix (of a system of linear equa-

tions), 132
coefficients (of a polynomial), 78
column (of a matrix), 133
column space (of a matrix), 224
column vector, 154, 161
commutative operator, 60, 124
companion matrix, 301
complex conjugation, 57
complex exponential function, 66
complex numbers, 50
complex plane, 52
complex vector space, 195
conjunction, and, 8
contradiction, 11
contraposition, 17
coordinate vector (w.r.t. an ordered basis),

202
cosine function, 43

De Morgan’s laws, 15
decreasing, 41
degree (of a polynomial), 78
DeMoivre’s formula, 71
determinant, 175
determinant (of a 2× 2 matrix), 176
diagonal matrix, 177
diagonalize, 264
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differentiation rules, 306
dimension (of a vector space), 206
disjoint sets, 28
disjoint union, 28
disjunction, or, 9
distributive law, 60, 124
division algorithm (for polynomials), 95
domain, 32
double root, 83

eigenspace (of a linear map), 256
eigenspace (of a matrix), 256
eigenvalue (of a linear map), 247
eigenvalue (of a matrix), 247
eigenvector (of a linear map), 247
eigenvector (of a matrix), 247
elementary row operations, 135
empty set, 25
Euler’s formula, 69
expansion (of the determinant), 187

factor (of a polynomial), 93
factorial, 104
Fibonacci numbers, 109
field, 124
forcing function, 280, 298
function, 32
fundamental theorem of algebra, 97

general solution, 280
general solution (of a homogeneous system

of linear equations), 150
general solution (of a system of linear, first-

order ODEs), 289
general solution (of an inhomogeneous sys-

tem of linear equations), 151
geometric multiplicity (of an eigenvector),

259

homogeneous (linear, n-th order ODE), 298
homogeneous first-order ODE, 280

homogeneous system of linear, first-order
ODEs, 286

homogenous (system of linear equations),
128

identity function, 32
identity matrix, 168
image (of a matrix), 225
image of a function, 32
imaginary axis, 52
imaginary part, 52
implication, 10
increasing, 41
induction hypothesis, 115
induction principle, 115
induction step, 115
induction with base case b, 120
inhomogeneous (n-th order, linear ODE),

298
inhomogeneous (system of linear equations),

128
inhomogeneous first-order ODE, 280
inhomogeneous system of linear, first-order

ODEs, 286
initial value condition, 283
initial value problem, 283
injective, 35
integers, 24
intersection, 27
interval, 26
inverse function, 37
inverse trigonometric functions, 45
invertible matrix, 168

Jordan block, 274
Jordan normal form, 276

kernel (of a linear map), 229
kernel (of a matrix), 221

Laplace expansion (of the determinant), 187
leading coefficient (of a polynomial), 78
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left kernel (of a matrix), 222
left null space (of a matrix), 222
linear combination, 156
linear first-order ODE, 280
linear map, 218
linear transformation, 218
linearly dependent, 157, 198
linearly independent, 157, 198
logical consequence, 11
logical proposition, 6
logically equivalent, 12
long division (for polynomials), 95
lower triangular matrix, 179

map, 32
mapping matrix, 234
matrix, 131
matrix representation (of a linear map), 234
modulus, 61
monotone, 41
multiplicity (of a root), 99

natural numbers, 24
negation, 9
null space (of a matrix), 222
nullity (of a matrix), 222

ODE (ordinary differential equation), 278
open interval, 26
ordered basis, 200

particular solution, 242
particular solution (to a system of linear,

first-order ODEs), 286
particular solution (to an inhomogeneous

system of linear equations), 130, 146
pivot, 139
polar coordinates, 62
polar form, 72
polynomial, 78
polynomial division, 95
polynomial equation, 81

polynomial function, 80
product rule (for differentiation), 307
proof by induction, 115
propositional logic, 6
pseudo-code, 39
purely imaginary numbers, 52

quotient (under polynomial division), 95
quotient rule, 307

range, 225
rank (of a matrix), 142
rank,column rank, 224
rank-nullity theorem (for linear maps), 243
rank-nullity theorem (for matrices), 223
rational numbers, 26
real axis, 52
real line, 50
real numbers, 24
real part, 52
real vector space, 195
rectangular coordinates, 53
rectangular form, 53
recursion, 104
recursive;recursion, 108
remainder (under polynomial division), 96
right kernel (of a matrix), 222
right null space (of a matrix), 222
root, 81
row (of a matrix), 133
row echelon form, 139
row rank (of a matrix), 225
row reduced echelon form, 139
row vector, 154, 161

scalar, 155, 194
set, 24
set difference, 29
similar matrices, 253
sine function, 43
span, 213
square matrix, 168
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standard basis (of Fm), 204
subset, 25
subspace, 211
surjective, 36

tangent function, 43
tautology, 11
terms (of a polynomial), 78
towers of Hanoi, 109
trace (of a matrix), 226
transpose (of a matrix), 166
trigonometric functions, 43
truth table, 7

union, 28
unit circle, 306
upper triangular matrix, 178

vector, 154, 194
vector (in Fn), 154
vector space, 194

zero polynomial, 79
zero vector, 194
zero vector (of Fn), 154
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