Exercises – Long Day#


Exercise 1: Linear Combinations#

We are given the following vectors in \(\mathbb{R}^3\):

\[\begin{split} {\mathbf u}=\left[ \begin{array}{c} 4\\ -2\\ 0\\ \end{array} \right], \quad {\mathbf v}=\left[ \begin{array}{c} 7\\ 4\\ 3\\ \end{array} \right], \quad {\mathbf w}=\left[ \begin{array}{c} 1\\ 7\\ 3\\ \end{array} \right]. \end{split}\]

Question a#

Calculate the following linear kombinations of the three vectors \({\mathbf u}, {\mathbf v},\) and \({\mathbf w}.\)

  1. \(4{\mathbf v}.\)

  2. \(2{\mathbf u}-3{\mathbf w}\).

  3. \(3{\mathbf u}-2{\mathbf v}+2{\mathbf w}\).

Question b#

Determine whether the vectors \({\mathbf u}, {\mathbf v},\) and \({\mathbf w}\) are linearly independent based on your answers to Question a.

Question c#

Show that the vectors \({\mathbf u}\) and \({\mathbf v}\) are linearly independent.


Exercise 2: Linearly Independent Vectors in \(\mathbb{R}^4\)#

We are given the following three vectors in \(\mathbb{R}^4\):

\[\begin{split} {\mathbf u}=\left[ \begin{array}{c} 1\\ 1\\ 0\\ 0\\ \end{array} \right], \quad {\mathbf v}=\left[ \begin{array}{c} 0\\ 1\\ 1\\ 0\\ \end{array} \right], \quad {\mathbf w}=\left[ \begin{array}{c} 0\\ 0\\ 1\\ 1\\ \end{array} \right]. \end{split}\]

Question a#

Show that the vectors \({\mathbf u}, {\mathbf v},\) and \({\mathbf w}\) are linearly independent.

Question b#

Assume that \({\mathbf c} \in \mathbb{R}^4\) fulfills that the vectors \({\mathbf u}, {\mathbf v}, {\mathbf w},\) and \({\mathbf c}\) are linearly independent. Show that then the vector \(\mathbf c\) cannot be written as a linear combination of \({\mathbf u}, {\mathbf v},\) and \({\mathbf w}\).

Question c#

Find a vector \({\mathbf b} \in \mathbb{R}^4\) such that the vectors \({\mathbf u}, {\mathbf v}, {\mathbf w},\) and \({\mathbf b}\) are linearly independent.


Exercise 3: Linear Independence and Reduced Row-Echelon Form#

We are given the following three vectors in \(\mathbb{R}^3\):

\[\begin{split} {\mathbf v_1}=\left[ \begin{array}{c} 1\\ 0\\ 4\\ \end{array} \right], \quad {\mathbf v_2}=\left[ \begin{array}{c} 1\\ 1\\ 7\\ \end{array} \right], \quad {\mathbf v_3}=\left[ \begin{array}{c} 1\\ 2\\ 3\\ \end{array} \right]. \end{split}\]

Question a#

Let \(\mathbf A\) be the \(3 \times 3\) matrix that has \({\mathbf v}_1, {\mathbf v}_2,\) and \({\mathbf v}_3\) as columns. Calculate the reduced row-echelon form of the matrix and use this form to determine the rank of \({\mathbf A}\).

Question b#

Are the given vectors \({\mathbf v}_1, {\mathbf v}_2,\) and \({\mathbf v}_3\) linearly independent?

Question c#

Can four vectors \({\mathbf w}_1, {\mathbf w}_2, {\mathbf w}_3,\) and \({\mathbf w}_4\) in \(\mathbb{R}^3\) be linearly independent?


Exercise 4: Matrix Products#

We are given the following three matrices:

\[\begin{split} {\mathbf A}=\left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{array} \right] \quad {\mathbf B}=\left[ \begin{array}{cc} 1 & 4\\ 2 & 1\\ 3 & 0\\ \end{array} \right] \quad {\mathbf C}=\left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 2 & 0 & 0 \\ \end{array} \right]. \end{split}\]

Question a#

Which of the nine combinations of matrix products \({\mathbf A}\cdot{\mathbf A}\), \(\, {\mathbf A}\cdot{\mathbf B}\), \(\, {\mathbf A}\cdot{\mathbf C}\), \(\, {\mathbf B}\cdot{\mathbf A}\), \(\, {\mathbf B}\cdot{\mathbf B}\), \(\, {\mathbf B}\cdot{\mathbf C}\), \(\, {\mathbf C}\cdot{\mathbf A}\), \(\, {\mathbf C}\cdot{\mathbf B}\), \(\, {\mathbf C}\cdot{\mathbf C}\) are defined?

Question b#

Calculate the matrix products \({\mathbf A}\cdot{\mathbf B}\) and \({\mathbf B}\cdot{\mathbf A}\). Does it hold true that \({\mathbf A}\cdot{\mathbf B}={\mathbf B}\cdot{\mathbf A}\)?

Question c#

Calculate the product of the scalar \(-1/2\) with the matrix \(\mathbf C\). In other words, calculate \((-1/2) \cdot {\mathbf C}\).

Question d#

Determine whether the following sums of matrices are defined, and calculate those that are: \((-1/2) \cdot {\mathbf C}+{\mathbf A} \cdot {\mathbf B}\) and \((-1/2) \cdot {\mathbf C}+{\mathbf B} \cdot {\mathbf A}.\)


Exercise 5: Matrix-Vector Product and Systems of Linear Equations#

We are given the following system of linear equations

\[\begin{split} \left\{ \begin{array}{ccc} x_1 + x_4 & = & 0\\ -2x_1+x_2 +3x_4 & = & 1\\ 5x_1 +x_3 -4x_4 & = & 1\\ 4x_1 +x_2 +x_3 & = & 2\\ \end{array} \right. \end{split}\]

Question a#

Write the system in the same form as Equation (7-5) in the textbook.

Question b#

We define

\[\begin{split}{\mathbf A}=\left[ \begin{array}{ccccc} 1 & 0 & 0 & 1 \\ -2 & 1 & 0 & 3 \\ 5 & 0 & 1 & -4 \\ 4 & 1 & 1 & 0 \\ \end{array} \right], \quad {\mathbf b}=\left[ \begin{array}{c} 0 \\ 1 \\ 1 \\ 2 \\ \end{array} \right].\end{split}\]

Check that the given linear equation system has the augmented matrix \([{\mathbf A}|{\mathbf b}]\). In Exercise 3b from Short Day in Week 6 we checked that the linear equation system whose augmented matrix is \([{\mathbf A}|{\mathbf b}]\) has the following particular solution:

\[\begin{split} {\mathbf v}=\left[ \begin{array}{c} 0 \\ 1 \\ 1 \\ 0 \\ \end{array} \right]. \end{split}\]

Check this again, but this time by calculating the product \({\mathbf A}\cdot{\mathbf v}\).


Exercise 6: Finding Inverse Matrices#

We are given the following square matrix:

\[\begin{split}{\mathbf A}=\left[ \begin{array}{ccc} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 5 & 0 & 1 \\ \end{array} \right].\end{split}\]

Question a#

Determine whether the matrix \({\mathbf A}^{-1}\) exists, and if so then find it.


Exercise 7: Inverse Matrices and Systems of Linear Equations#

Let \({\mathbf A} \in \mathbb{C}^{n \times n}\) be a square matrix and assume that \({\mathbf A}\) is an invertible matrix. Furthermore, let \({\mathbf b} \in \mathbb{C}^n\) be a vector.

Question a#

Show that the vector \({\mathbf A}^{-1}\cdot {\mathbf b} \in \mathbb{C}^n\) is a solution to the linear equation system whose augmented matrix is \([{\mathbf A}|{\mathbf b}].\)

Question b#

Show that the vector \({\mathbf A}^{-1} \cdot {\mathbf b}\) is the only solution to the linear equation system whose augmented matrix is \([{\mathbf A}|{\mathbf b}].\)


Exercise 8: Systems of Equations with Variable Coefficients#

For all real values of \(a\) we are given the following system of linear equations:

\[\begin{align*} ax_1 + x_2 + x_3 &= 1\\ x_1 + ax_2 + x_3 &= 1\\ x_1 + x_2 + ax_3 &= 1 \end{align*}\]

Question a#

State the augmented matrix of the equation system.

Question b#

What is the solution for \(a=-2\)?

Question c#

Determine the solution to the linear equation system.


Remark#

The Python test on the notebook from Python module 1 released last week will open in Möbius at 15:30 and close at 17:00.