Exercises – Short Day#

Exercise 1: Transpose of Matrices#

Calculate

\[\begin{split}\left[ \begin{array}{cc} 1 & 2\\ 3 & 4\\ 5 & 6\\ \end{array} \right]^T.\end{split}\]

Exercise 2: Determinants#

We are given the following matrix:

\[\begin{split} {\mathbf A}=\left[ \begin{array}{ccc} 1 & 3 & 5\\ 2 & 4 & 6\\ 3 & 0 & 0\\ \end{array} \right]. \end{split}\]

The intention with this Exercise is to determine the determinant of this matrix by expanding the determinant by a row or column.

Question a#

Calculate the matrices \({\mathbf A}(1;1), {\mathbf A}(2;1),\) and \({\mathbf A}(3;1)\) as well as there determinants.

Question b#

Calculate \(\mathrm{det}({\mathbf A})\) using Definition 8.1.2 in the textbook. In other words, calculate \(\mathrm{det}({\mathbf A})\) by expanding the determinant by the first column.

Question c#

For the given matrix \({\mathbf A}\) it is more convenient to expand the determinant by the third row of the matrix. Why?

Question d#

To practice the expansion of determinants by a row, we will calculate \(\mathrm{det}({\mathbf A})\) one last time.

Calculate the matrices \({\mathbf A}(2;1), {\mathbf A}(2;2),\) and \({\mathbf A}(2;3)\) as well as their determinants. Now calculate \(\mathrm{det}({\mathbf A})\) by expanding the determinant by the second row.


Exercise 3: Determinants and Linear Independence#

We are given the following three vectors in \(\mathbb{R}^3\):

\[\begin{split} {\mathbf v_1}=\left[ \begin{array}{c} 1\\ 0\\ 4\\ \end{array} \right], \quad {\mathbf v_2}=\left[ \begin{array}{c} 1\\ 1\\ 7\\ \end{array} \right], \quad {\mathbf v_3}=\left[ \begin{array}{c} 1\\ -1\\ 1\\ \end{array} \right]. \end{split}\]

Use Corollary 8.2.5 in the textbook to determine whether the vectors \({\mathbf v}_1, {\mathbf v}_2,\) and \({\mathbf v}_3\) are linearly independent or not.


Exercise 4: Linear Dependence#

We are given the vectors

\[\begin{split} {\mathbf u}_1=\left[ \begin{array}{c} 1\\ 1\\ -6\\ \end{array} \right] \quad {\mathbf u}_2=\left[ \begin{array}{c} 1\\ 1\\ a\\ \end{array} \right] \quad {\mathbf u}_3=\left[ \begin{array}{c} a\\ -2\\ 0\\ \end{array} \right], \end{split}\]

where \(a \in \mathbb{R}\) is a constant. Determine all values of the constant \(a\) that will make the vectors \({\mathbf u}_1, {\mathbf u}_2,\) and \({\mathbf u}_3\) linearly dependent.


Exercise 5: Transpose of Square Matrices#

We konw from Theorem 7.2.2 in the textbook that \(({\mathbf A} \cdot {\mathbf B})^T={\mathbf B}^T \cdot {\mathbf A}^T\) for all \({\mathbf A} \in \mathbb{F}^{m \times n}\) and \({\mathbf B} \in \mathbb{F}^{n \times \ell}\). The symbol \(\mathbb{F}\) is in this course a placeholder for \(\mathbb{R}\) or \(\mathbb{C}.\)

Question a#

Conclude that \(({\mathbf A} \cdot {\mathbf B})^T={\mathbf B}^T \cdot {\mathbf A}^T\) for all \({\mathbf A},{\mathbf B} \in \mathbb{F}^{n \times n}\).

Question b#

Assume that the matrix \(\mathbf A \in \mathbb{F}^{n \times n}\) and that \(\rho({\mathbf A})=n\). Use the result from Question a to realize that \(({\mathbf A}^{T})^{-1}=({\mathbf A}^{-1})^T.\)