Exercises – Short Day#


Exercise 1: Ordered Bases in \(\mathbb{C^2}\)#

Is

\[\begin{split}\beta=\left(\left[\begin{array}{r}1\\i\end{array}\right],\left[\begin{array}{r}1+i\\-1+i\end{array}\right]\right) \end{split}\]

an ordered basis for \(\mathbb{C}^2\)?


Exercise 2: Coordinates with respect to the Ordered Standard Basis#

The ordered standard basis for \(\mathbb{R}^3\) is given as \(\epsilon=({\mathbf e}_1,{\mathbf e}_2,{\mathbf e}_3)\), where

\[\begin{split} {\mathbf e}_1=\left[\begin{array}{r}1\\0\\0\end{array}\right],\, {\mathbf e}_2=\left[\begin{array}{r}0\\1\\0\end{array}\right],\, {\mathbf e}_3=\left[\begin{array}{r}0\\0\\1\end{array}\right]\, .\end{split}\]

Why does it hold true that

\[\begin{split} \left[\begin{array}{r}a\\b\\c\end{array}\right]_\epsilon = \left[\begin{array}{r}a\\b\\c\end{array}\right] \end{split}\]

for all \(a,b,c \in \mathbb{R}\)?

Consider why it more generally applies that \([{\mathbf v}]_\epsilon={\mathbf v}\) for all \(\mathbf v \in \mathbb{F}^m\) if \(\epsilon\) is the ordered standard basis for \(\mathbb{F}^m\) as described in Example 9.2.1.


Exercise 3: Span, Ordered Basis, and Coordinates#

We consider \(W=\mathrm{Span}({\mathbf w}_1,{\mathbf w}_2,{\mathbf w}_3,{\mathbf w}_4)\) in \(\mathbb{C}^4\) where

\[\begin{split} {\mathbf w}_1=\left[\begin{array}{c}0\\0\\0\\0\end{array}\right],\, {\mathbf w}_2=\left[\begin{array}{c}0\\i\\0\\-2\end{array}\right],\, {\mathbf w}_3=\left[\begin{array}{c}0\\-i\\0\\2\end{array}\right],\, {\mathbf w}_4=\left[\begin{array}{c}1\\1\\-1\\2i\end{array}\right] \, \, .\end{split}\]

Question a#

Determine an ordered basis for \(W\).

Question b#

We are given the vector:

\[\begin{split}{\mathbf w}=\left[\begin{array}{c}1\\i\\-1\\-2\end{array}\right] \, .\end{split}\]

Calculate \([{\mathbf w}]_\beta\), where \(\beta=({\mathbf w}_2,{\mathbf w}_4)\).

Question c#

We are being informed that the equation \(c_1 {\mathbf w}_2 + c_2 {\mathbf w}_4 = {\mathbf u}\) in the unknowns \(c_1\) and \(c_2\) for some vector \(\mathbf u \in \mathbb{C}^4\) has no solutions. Can we conclude that \({\mathbf u}\) is not in \(W\)?


Exercise 4: Ordered Bases and Coordinates in \(\mathbb{R}^4\)#

In \(\mathbb{R}^4\) we are given the five vectors:

\[\begin{split} {\mathbf v}_1=\left[\begin{array}{r}1\\-1\\2\\1\end{array}\right],\, {\mathbf v}_2=\left[\begin{array}{r}0\\1\\1\\3\end{array}\right],\, {\mathbf v}_3=\left[\begin{array}{r}1\\-2\\2\\-1\end{array}\right],\, {\mathbf v}_4=\left[\begin{array}{r}0\\1\\-1\\3\end{array}\right], \, {\mathbf v}=\left[\begin{array}{r}1\\-2\\2\\-3\end{array}\right] \, .\end{split}\]

We are being informed that

\[\begin{split}\mathrm{det}\left( \left[\begin{array}{rrrr}1 & 0 & 1 & 0\\-1 & 1 & -2 & 1\\2 & 1 & 2 & -1\\1 & 3 & -1 & 3\end{array}\right] \right) = 2.\end{split}\]

Question a#

Justify that \(\beta=({\mathbf v}_1,{\mathbf v}_2,{\mathbf v}_3,{\mathbf v}_4)\) is an ordered basis for \(\mathbb{R}^4\,\).

Question b#

Determine the \(\beta\) coordinate vector \([{\mathbf v}]_\beta\), where \(\beta=({\mathbf v}_1,{\mathbf v}_2,{\mathbf v}_3,{\mathbf v}_4)\) is the ordered basis from Question a.


Exercise 5: Coordinates with respect to an Ordered Basis#

We are given the vector

\[\begin{split}{\mathbf u}=\left[\begin{array}{r}1\\2\\3\end{array}\right]\end{split}\]

in \(\mathbb C^3\). Find an ordered basis \(\gamma\) for \(\mathbb{C}^3\) such that

\[\begin{split}[{\mathbf u}]_\gamma=\left[\begin{array}{r}1\\1\\1\end{array}\right].\end{split}\]

Exercise 6: Examples of Spans#

We are given a natural number \(n\) and an integer \(d\) that fulfill \(0 \le d \le n\). Find \(d\) vectors in \(\mathbb{R}^n\) such that their span has a dimension equal to \(d\).