Exercises – Short Day#


Exercise 1: Transposed Matrices#

Compute

\[\begin{split}\left[ \begin{array}{cc} 1 & 2\\ 3 & 4\\ 5 & 6\\ \end{array} \right]^T\end{split}\]

both by hand and using SymPy.


Exercise 2: Determinants#

We are given the following matrix:

\[\begin{split} {\mathbf A}=\left[ \begin{array}{ccc} 1 & 3 & 5\\ 2 & 4 & 6\\ 3 & 0 & 0\\ \end{array} \right]. \end{split}\]

Question a#

Determine the matrices \({\mathbf A}(1;1)\), \({\mathbf A}(2;1)\), and \({\mathbf A}(3;1)\) and compute their determinants.

Question b#

Compute \(\mathrm{det}({\mathbf A})\) by hand using Definition 8.1.2 from the textbook. In other words, compute \(\mathrm{det}({\mathbf A})\) by expanding the determinant along the first column.

Question c#

Compute the matrices \({\mathbf A}(2;1)\), \({\mathbf A}(2;2)\), and \({\mathbf A}(2;3)\) as well as their determinants.

Question d#

Compute \(\mathrm{det}({\mathbf A})\) by hand by expanding the determinant along the 2nd row.

Question e#

In this case it is convenient to expand the determinant along the 3rd row. Why?

Question f#

Lastly, compute \(\mathrm{det}({\mathbf A})\) using SymPy.


Exercise 3: Determinants and Linear Independency#

We are given the following four vectors in \(\mathbb{C}^4\):

\[\begin{split} {\mathbf v}_1=\left[ \begin{array}{c} 1\\ 1\\ 0\\ i\\ \end{array} \right] \quad {\mathbf v}_2=\left[ \begin{array}{c} 4+i\\ 1\\ -i\\ 0\\ \end{array} \right] \quad {\mathbf v}_3=\left[ \begin{array}{c} 1+i\\ 1-i\\ 5i\\ -7\\ \end{array} \right] \quad {\mathbf v}_4=\left[ \begin{array}{c} -6\\ 0\\ 7i\\ -8+i\\ \end{array} \right] . \end{split}\]

Use Corollary 8.3.5 from the textbook to determine whether the vectors \({\mathbf v}_1, {\mathbf v}_2, {\mathbf v}_3,\) and \({\mathbf v}_4\) are linearly independent or not. SymPy can be used to compute determinants.


Exercise 4: Linear Dependency#

We are given the vectors

\[\begin{split} {\mathbf u}_1=\left[ \begin{array}{c} 1\\ 1\\ -6\\ \end{array} \right] \quad {\mathbf u}_2=\left[ \begin{array}{c} 1\\ 1\\ a\\ \end{array} \right] \quad {\mathbf u}_3=\left[ \begin{array}{c} a\\ -2\\ 0\\ \end{array} \right], \end{split}\]

where \(a \in \mathbb{R}\) is a constant. Determine by hand all values of the constant \(a\) such that the vectors \({\mathbf u}_1\), \({\mathbf u}_2\), and \({\mathbf u}_3\) are linearly independent.


Exercise 5: Transposed Square Matrices#

We know from Theorem 7.2.2 in the textbook that \(({\mathbf A} \cdot {\mathbf B})^T={\mathbf B}^T \cdot {\mathbf A}^T\) for all \({\mathbf A} \in \mathbb{F}^{m \times n}\) and \({\mathbf B} \in \mathbb{F}^{n \times \ell}\). The symbol \(\mathbb{F}\) represents \(\mathbb{R}\) or \(\mathbb{C}.\)

Question a#

Conclude that \(({\mathbf A} \cdot {\mathbf B})^T={\mathbf B}^T \cdot {\mathbf A}^T\) for all \({\mathbf A},{\mathbf B} \in \mathbb{F}^{n \times n}\).

Question b#

Assume that \(\mathbf A \in \mathbb{F}^{n \times n}\) and that \(\rho({\mathbf A})=n\). Use the result from Question a to realise that \(({\mathbf A}^{T})^{-1}=({\mathbf A}^{-1})^T.\)