Exercises – Short Day#


Exercise 1: Diagonalization of Matrix#

A linear map \(\,f: \mathbb{R}^3\rightarrow\ \mathbb{R}^3\,\) has with respect to the standard ordered basis in \(\, \mathbb{R}^3 \,\) the mapping matrix:

\[\begin{split}{\mathbf {}_e [f]_e}=\left[\begin{array}{cc} 1 & 0 & 0\\ 1 & 1 & 1\\ 1 & 0 & 2 \end{array}\right] \in \mathbb{R}^{3 \times 3}.\end{split}\]

Question a#

Provide an ordered basis \(\,v\,\) for \(\,\mathbb{R}^3\,\) with respect to which the mapping matrix of \(\,f\,\) becomes a diagonal matrix, and determine the corresponding change-of-basis matrix \(\, \mathbf {}_e [\mathrm{id}_{\mathbb{R}^3}]_v \,\) that switches from \(v\)-coordinates to \(e\)-coordinates.

Question b#

State an invertible matrix \(\, \mathbf V\,\) and a diagonal matrix \(\, \mathbf{\Lambda}\, \) such that

\[\mathbf{\Lambda} = {\mathbf V}^{-1} \cdot {}_e [f]_e \cdot {\mathbf V}.\]

Exercise 2: Diagonalization#

This exercise is to be solved purely by hand.

Question a#

We are given the matrix:

\[\begin{split}{\mathbf A}=\left[\begin{array}{cc} 9 & -6\\ 8 & -7 \end{array}\right] \in \mathbb{R}^{2 \times 2}.\end{split}\]

Investigate whether \(\,\mathbf A\,\) can be diagonalized, and if so then state an invertible matrix \(\,\mathbf V\,\) and a diagonal matrix \(\,\mathbf{\Lambda}\,\), such that

\[\,\mathbf{\Lambda}={\mathbf V}^{-1}\cdot\mathbf A\cdot\mathbf V.\]

Question b#

We are given the matrix

\[\begin{split}{\mathbf B}=\left[\begin{array}{cc} 3 & 1 & -2 \\ 1 & 3 & 1 \\0 & 0 & 2 \end{array}\right] \in \mathbb{R}^{3 \times 3}.\end{split}\]

Investigate whether \(\,\mathbf B \,\) can be diagonalized, and if so then state an invertible matrix \(\,\mathbf V \,\) and a diagonal matrix \(\,\mathbf{\Lambda}\,,\) such that

\[\mathbf{\Lambda}={\mathbf V}^{-1}\cdot\mathbf B\cdot\mathbf V.\]

Question c#

We are given the matrix

\[\begin{split}{\mathbf C}=\left[\begin{array}{cc} 2 & 0 & 0 \\ 1 & 1 & 1 \\-1 & 1 & 1 \end{array}\right] \in \mathbb{R}^{3 \times 3}.\end{split}\]

Investigate whether \(\,\mathbf C\,\) can be diagonalized, and if so then state an invertible matrix \(\,\mathbf V\,\) and a diagonal matrix \(\,\mathbf{\Lambda}\,,\) such that

\[\mathbf{\Lambda}={\mathbf V}^{-1}\cdot\mathbf C\cdot\mathbf V.\]

Exercise 3: Complex Diagonalization#

We are given the matrix

\[\begin{split}{\mathbf M}=\left[\begin{array}{cc} 3 & 0 & 0 \\ 0 & 1 & -1 \\ 5 & 1 & 1 \end{array}\right] \in \mathbb{C}^{3 \times 3}.\end{split}\]

Question a#

Find eigenvalues and associated complex eigenspaces of \(\,\mathbf M\,.\)

Question b#

Diagonalize \(\,\mathbf M \,\), meaning determine matrices \(\mathbf Q\) and \(\mathbf{\Lambda}\) such that:

\[\mathbf{\Lambda}={\mathbf Q}^{-1}\,\mathbf M\,\mathbf Q.\]

Exercise 4: Diagonalization of Matrix with SymPy#

Question a#

Use SymPy’s eigenvects() command to determine all eigenvalues and associated eigenspaces of the following matrix:

\[\begin{split}{\mathbf A}=\left[\begin{array}{cc} -1 & -1 & -6 & 3\\ 1 & -2 & -3 & 0\\ -1 & 1 & 0 & 1 \\ -1 & -1 & -5 & 3 \end{array}\right] \in \mathbb{R}^{4 \times 4}.\end{split}\]

Question b#

Investigate whether an invertible matrix \(\, \mathbf V\,\) and a diagonal matrix \(\,\mathbf{\Lambda}\,\) exist such that

\[\mathbf{\Lambda}={\mathbf V}^{-1}\cdot \mathbf A\cdot{\mathbf V}.\]

Exercise 5: Similar Matrices#

We are given the matrices

\[\begin{split}{\mathbf A}=\left[\begin{array}{cc} 0&1\\ -1&0 \end{array}\right] \,\,\, , \,\,\, {\mathbf B}=\left[\begin{array}{cc} 0&-1\\ 1&0 \end{array}\right] \in \mathbb{C}^{2 \times 2}.\end{split}\]

Question a#

Justify that \(\mathbf A\) and \(\mathbf B\) are similar.